

www.dasya.dk @dasyaITU

<u>dff.dk</u>

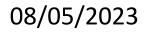
IT UNIVERSITY OF COPENHAGEN

www.itu.dk

Profiling & Monitoring Deep Learning Training Tasks

Ehsan Yousefzadeh-Asl-Miandoab (<u>ehyo@itu.dk</u>), Ties Robroek (<u>titr@itu.dk</u>), Pınar Tözün (<u>pito@itu.dk</u>) IT University of Copenhagen

3rd EuroMLSys workshop – EuroSys '23, Rome, Italy



GPU Underutilization for ML Workloads

- An analysis of 100,000 jobs run by 100s of users for ~2 months on a real-world cluster shows ~52% GPU utilization on average*
 - Energy-inefficient & waste of hardware resources
- Compute/memory requirements of models don't match with the giant GPUs
 - e.g., transfer learning, small models

Thus, understanding the profilers and monitoring tools for GPUs is necessary.

IT UNIVERSITY OF COPENHAGEN

Profilers

PyTorch Profiler NVIDIA Nsight Systems (nsys) NVIDIA Nsight Compute (ncu)

• Trace-based

- Runs as part of the training process
- Easier to use
 - a few lines of additional code

- Trace-based system-wide
- Runs as a separate process
- More detailed insights to OS & network
- Doesn't work when Multi-Instance GPU (MIG) is enabled on the GPU

- Kernel-level tracing of microarchitectural behavior
- Runs as a separate process
- Intrusive to program behavior
 - Runs the program several times

Monitoring tools

NVIDIA System Management Interface (nvidia-smi)

- Performance configuration (frequency changing, MIG config)
- Tracking a range of high-level performance metrics
 - GPU Utilization
 - Memory Consumption
 - ...
- Doesn't monitor MIG instances

NVIDIA Data Center GPU Manager (dcgm)

- Easier management by grouping option
- Finer-grained performance metrics for monitoring
 - SM Active (SMACT)
 - SM Occupancy (SMOCC)

• ...

• Can monitor MIG instances

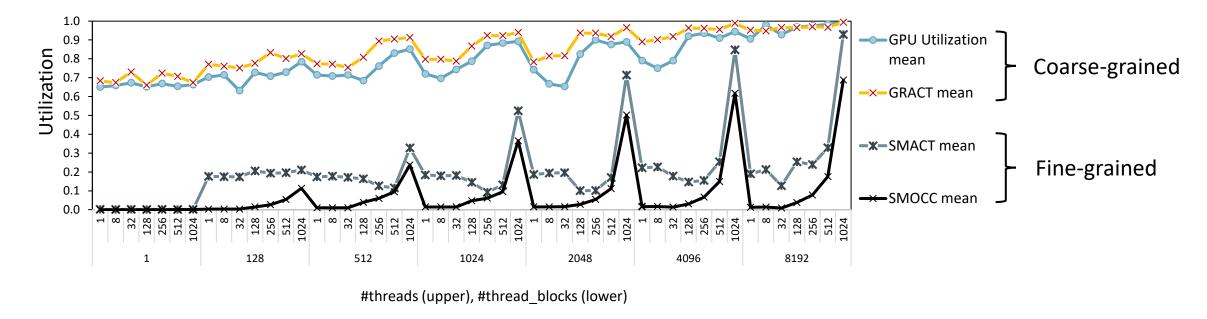
Experimental Setup

- Goal: Understanding GPU utilization metrics; overheads and strengths of the tools
- Experiment 1: A microbenchmark to analyze GPU utilization metrics
- Experiment 2: Model runs to analyze the overheads
 - On PyTorch 1.13.1 with 5 epochs
 - Light workload: Small CNN on MNIST
 - *Heavy workload*: ResNet50 on ImageNet, batch-size = 32
- Hardware: NVIDIA DGX A100 Station
 - 4X A100 40 GB
 - 1X EPYC 7742, 64 cores
 - RAM: 512 GB
- Tools
 - Default settings for PyTorch Profiler and Nsight Systems
 - Omitted Nsight Compute due to its intrusive nature

IT UNIVERSITY OF COPENHAGEN

GPU Utilization

- GPU Utilization: % of time one or more kernels were executing on the GPU
- **GRACT**: % of time any portion of the graphics or compute engines were active
- SMACT: the fraction of active time on an SM, averaged over all SMs
- **SMOCC**: degree of parallelism / max supported parallelism on SM

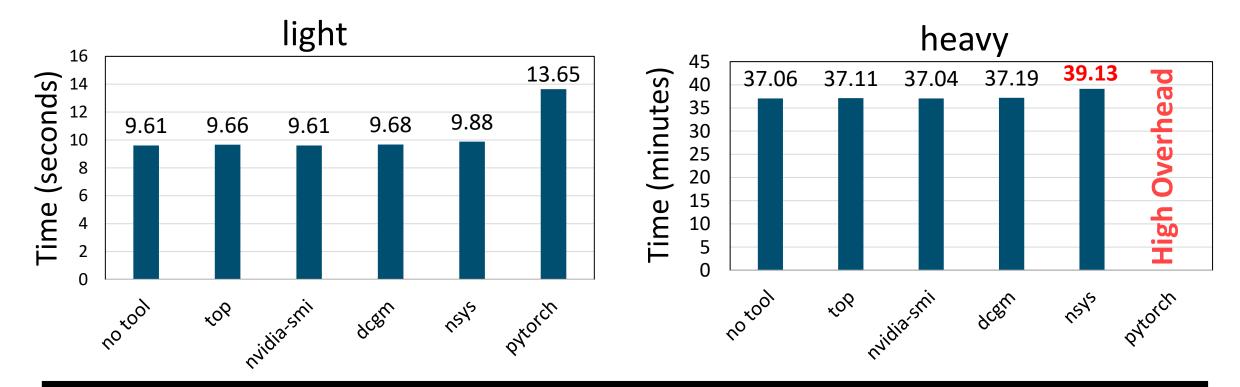


Coarser-grained utilization metrics can be misleading.

Ehsan Yousefzadeh-Asl-Miandoab "Orchestration of Deep Learning Tasks on CPU-GPU Co-Processors for Multi-Tenant Settings"

Time overhead of tools

Average Epoch Time



Monitoring tools have negligible time overhead.
Profilers' overhead is noticeable.

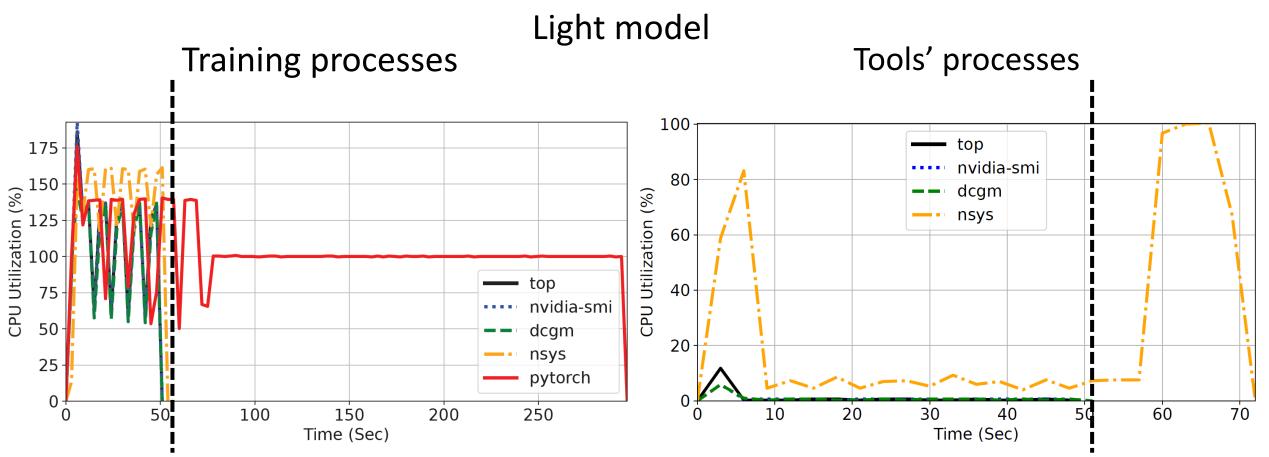
➔ Profiling just for one iteration might be enough.

Space overhead of tools

Tool	Small CNN	ResNet50
top	~20KB	~2MB
nvidia-smi	~20KB	~2MB
dcgm	~85KB	~8MB
nsys	~40MB	~5GB
pytorch	~1.4GB	-

→ Trends for space overhead are similar to time overhead for all tools.

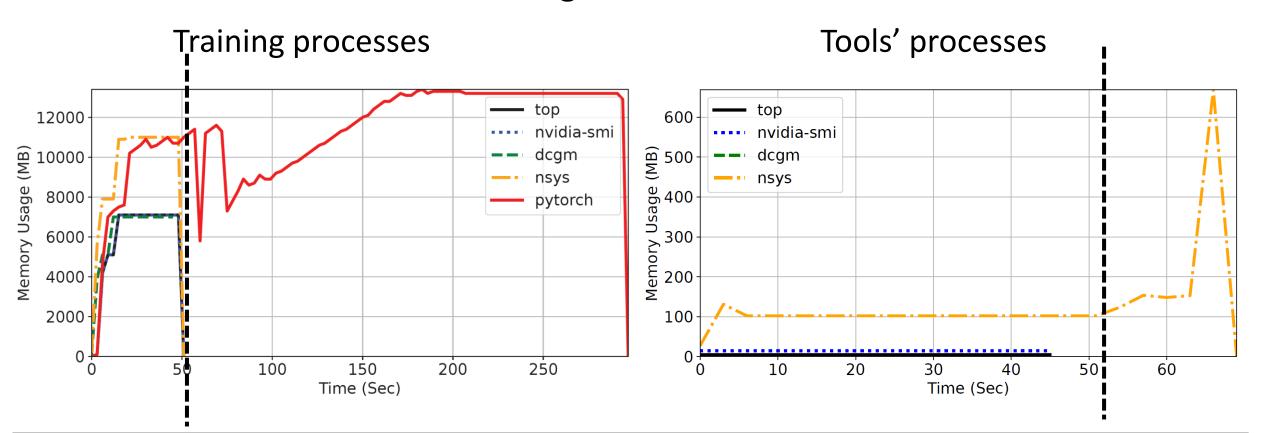
CPU overhead



CPU usage overhead of profiling tools is higher than monitoring ones.
Profiling tools also need time for post-processing of collected traces.

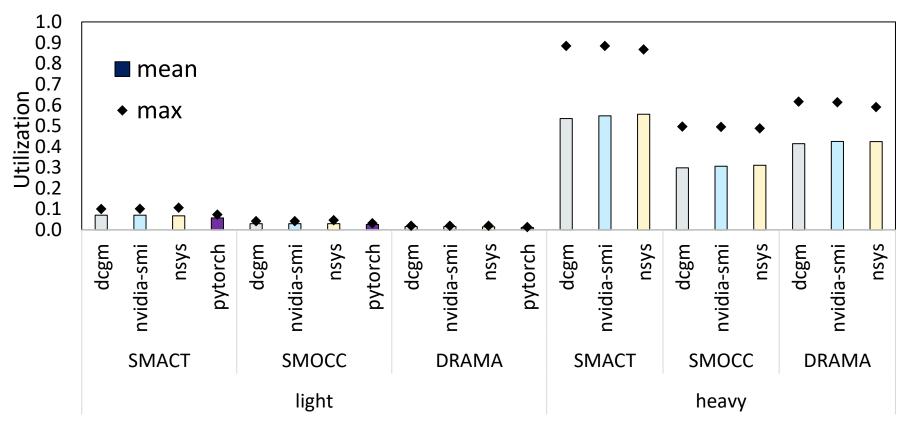
CPU memory overhead

Light model



Memory overhead of profiling tools is also higher than monitoring tools'!

GPU overhead



tool, metric, model size from top to bottom

GPU overhead of all the tools is negligible!

Summary – Insights

- For model level optimization purposes
 - Use framework specific profilers
- For digging deeper into OS and system
 - Use Nsight Systems
- For kernel-level optimizations
 - Use Nsight Compute
- Profile the needed amount of code for a reasonable range of time
 - Profiling for an iteration might be enough to show the behavior of training a model
- For online decision-making purposes
 - Use monitoring tools with representative fine-grained metrics

