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GPU Underutilization for ML Workloads

• An analysis of 100,000 jobs run by 100s of users for ~2 months on a real-world 
cluster shows ~52% GPU utilization on average*
• Energy-inefficient & waste of hardware resources

• Compute/memory requirements of models don’t match with the giant GPUs
• e.g., transfer learning, small models
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Memory: 80GB

Memory Bandwidth: 
3000 GB/sec

L2 cache: 50MB

* Jeon, Myeongjae, et al. "Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads." USENIX Annual Technical Conference. 2019.

BASIC-L: ~2.44billion parameters

CAIT-M-48-448: ~438million parameters

ResNet50: ~25million parameters

Thus, understanding the profilers and monitoring tools for GPUs is necessary.



Profilers

PyTorch Profiler

• Trace-based

• Runs as part of the 
training process

• Easier to use
• a few lines of 

additional code

3

NVIDIA Nsight Systems (nsys)

• Trace-based system-wide

• Runs as a separate process

• More detailed insights to OS 
& network 

• Doesn’t work when Multi-
Instance GPU (MIG) is 
enabled on the GPU

NVIDIA Nsight Compute (ncu)

• Kernel-level tracing of 
microarchitectural behavior 

• Runs as a separate process

• Intrusive to program 
behavior
• Runs the program several 

times

Ehsan Yousefzadeh-Asl-Miandoab et al. “Profiling & Monitoring Deep Learning Training Tasks”



Monitoring tools

NVIDIA System Management 
Interface (nvidia-smi)

• Performance configuration 
(frequency changing, MIG config)

• Tracking a range of high-level 
performance metrics
• GPU Utilization

• Memory Consumption

• …

• Doesn’t monitor MIG instances
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NVIDIA Data Center GPU Manager 
(dcgm)

• Easier management by grouping 
option

• Finer-grained performance metrics 
for monitoring
• SM Active (SMACT)

• SM Occupancy (SMOCC)

• …

• Can monitor MIG instances
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Experimental Setup
• Goal: Understanding GPU utilization metrics; overheads and strengths of the tools

• Experiment 1: A microbenchmark to analyze GPU utilization metrics 

• Experiment 2: Model runs to analyze the overheads
• On PyTorch 1.13.1 with 5 epochs
• Light workload: Small CNN on MNIST
• Heavy workload: ResNet50 on ImageNet, batch-size = 32

• Hardware: NVIDIA DGX A100 Station
• 4X A100 40 GB
• 1X EPYC 7742, 64 cores
• RAM: 512 GB

• Tools
• Default settings for PyTorch Profiler and Nsight Systems
• Omitted Nsight Compute due to its intrusive nature
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GPU Utilization
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• GPU Utilization:  % of time one or more kernels were executing on the GPU

• GRACT:  % of time any portion of the graphics or compute engines were active

• SMACT: the fraction of active time on an SM, averaged over all SMs

• SMOCC: degree of parallelism / max supported parallelism on SM

Ehsan Yousefzadeh-Asl-Miandoab “Orchestration of Deep Learning Tasks on CPU-GPU Co-Processors for Multi-Tenant Settings”

Coarser-grained utilization metrics can be misleading.
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Time overhead of tools Average Epoch Time 
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➔Monitoring tools have negligible time overhead.
➔ Profilers’ overhead is noticeable.

➔ Profiling just for one iteration might be enough.



Space overhead of tools

Tool Small CNN ResNet50

top ~20KB ~2MB

nvidia-smi ~20KB ~2MB

dcgm ~85KB ~8MB

nsys ~40MB ~5GB

pytorch ~1.4GB -

8Ehsan Yousefzadeh-Asl-Miandoab et al. “Profiling & Monitoring Deep Learning Training Tasks”

➔ Trends for space overhead are similar to time overhead for all tools.



CPU overhead
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Training processes Tools’ processes

➔ CPU usage overhead of profiling tools is higher than monitoring ones.
➔ Profiling tools also need time for post-processing of collected traces.

Light model



CPU memory overhead
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Training processes Tools’ processes

Memory overhead of profiling tools is also higher than monitoring tools’! 

Light model



GPU overhead
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GPU overhead of all the tools is negligible!
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Summary – Insights
• For model level optimization purposes

• Use framework specific profilers

• For digging deeper into OS and system
• Use Nsight Systems

• For kernel-level optimizations
• Use Nsight Compute

• Profile the needed amount of code for a reasonable range of time
• Profiling for an iteration might be enough to show the behavior of training a model 

• For online decision-making purposes
• Use monitoring tools with representative fine-grained metrics
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Thanks! ☺
Ehsan Yousefzadeh-Asl-Miandoab et al. “Profiling & Monitoring Deep Learning Training Tasks”


	Slide 1
	Slide 2: GPU Underutilization for ML Workloads
	Slide 3: Profilers
	Slide 4: Monitoring tools
	Slide 5: Experimental Setup
	Slide 6: GPU Utilization
	Slide 7: Time overhead of tools
	Slide 8: Space overhead of tools
	Slide 9: CPU overhead
	Slide 10: CPU memory overhead
	Slide 11: GPU overhead
	Slide 12: Summary – Insights

