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GPU Underutilization for ML Workloads

* An analysis of 100,000 jobs run by 100s of users for ~¥2 months on a real-world
cluster shows ~52% GPU utilization on average*

* Energy-inefficient & waste of hardware resources

* Compute/memory requirements of models don’t match with the giant GPUs
* e.g., transfer learning, small models

Memory: 80GB BASIC-L: ~2.44billion parameters

L2 cache: 50MB CAIT-M-48-448: ~438million parameters

Memory Bandwidth: ResNet50: “25million parameters

3000 GB/sec

Thus, understanding the profilers and monitoring tools for GPUs is necessary.

* Jeon, Myeongjae, et al. "Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads." USENIX Annual Technical Conference. 2019. 2
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Profilers
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PyTorch Profiler NVIDIA Nsight Systems (nsys) NVIDIA Nsight Compute (ncu)

* Trace-based * Trace-based system-wide < Kernel-level tracing of
microarchitectural behavior

e Runs as part of the * Runs as a separate process ° Runs as a separate process

training process * More detailed insights to OS * Intrusive to program
& network behavior
* Easier to use * Doesn’t work when Multi- ' E;nes’sthe program several
* afew lines of Instance GPU (MIG) is
additional code enabled on the GPU
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Monitoring tools

NVIDIA System Management NVIDIA Data Center GPU Manager
Interface (nvidia-smi) (dcgm)
* Performance configuration * Easier management by grouping
(frequency changing, MIG config) option
* Tracking a range of high-level * Finer-grained performance metrics
performance metrics for monitoring
* GPU Utilization * SM Active (SMACT)
* Memory Consumption * SM Occupancy (SMOCC)
* Doesn’t monitor MIG instances * Can monitor MIG instances
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Experimental Setup

e Goal: Understanding GPU utilization metrics; overheads and strengths of the tools
e Experiment 1: A microbenchmark to analyze GPU utilization metrics

* Experiment 2: Model runs to analyze the overheads
e On PyTorch 1.13.1 with 5 epochs
* Light workload: Small CNN on MNIST
* Heavy workload: ResNet50 on ImageNet, batch-size = 32

e Hardware: NVIDIA DGX A100 Station
e 4X A10040 GB
» 1IXEPYC 7742, 64 cores
« RAM: 512 GB

* Tools
e Default settings for PyTorch Profiler and Nsight Systems
* Omitted Nsight Compute due to its intrusive nature
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GPU Utilization

e GPU Utilization: % of time one or more kernels were executing on the GPU

* GRACT: % of time any portion of the graphics or compute engines were active
* SMACT: the fraction of active time on an SM, averaged over all SMs

* SMOCC: degree of parallelism / max supported parallelism on SM
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Coarser-grained utilization metrics can be misleading.
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Time overhead of tools  average Epoch Time
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=» Monitoring tools have negligible time overhead.
=>» Profilers’ overhead is noticeable.

=>» Profiling just for one iteration might be enough.
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Space overhead of tools

Small CNN | ResNet50

top ~20KB ~2MB
nvidia-smi ~20KB ~2MB
dcgm ~85KB ~8MB
nsys ~40MB ~5GB

pytorch ~1.4GB -

=» Trends for space overhead are similar to time overhead for all tools.
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CPU overhead
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=» CPU usage overhead of profiling tools is higher than monitoring ones.

=>» Profiling tools also need time for post-processing of collected traces.
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CPU memory overhead
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Memory overhead of profiling tools is also higher than monitoring tools’!
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GPU overhead
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GPU overhead of all the tools is negligible!
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Summary — Insights

* For model level optimization purposes
* Use framework specific profilers

* For digging deeper into OS and system
e Use Nsight Systems

* For kernel-level optimizations
e Use Nsight Compute

* Profile the needed amount of code for a reasonable range of time
* Profiling for an iteration might be enough to show the behavior of training a model

* For online decision-making purposes
e Use monitoring tools with representative fine-grained metrics

Thanks! ©
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