
Profiling & Monitoring
Deep Learning Training Tasks

Ehsan Yousefzadeh-Asl-Miandoab (ehyo@itu.dk),
Ties Robroek (titr@itu.dk), Pınar Tözün (pito@itu.dk)

IT University of Copenhagen

www.itu.dk
www.dasya.dk
@dasyaITU

3rd EuroMLSys workshop – EuroSys ’23, Rome, Italy 08/05/2023

RAD
https://rad.itu.dk

dff.dk

mailto:ehyo@itu.dk
mailto:titr@itu.dk
mailto:pito@itu.dk
http://www.itu.dk/
http://www.dasya.dk/
https://twitter.com/dasyaITU/
https://rad.itu.dk/
https://dff.dk/

GPU Underutilization for ML Workloads

• An analysis of 100,000 jobs run by 100s of users for ~2 months on a real-world
cluster shows ~52% GPU utilization on average*
• Energy-inefficient & waste of hardware resources

• Compute/memory requirements of models don’t match with the giant GPUs
• e.g., transfer learning, small models

2

Memory: 80GB

Memory Bandwidth:
3000 GB/sec

L2 cache: 50MB

* Jeon, Myeongjae, et al. "Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads." USENIX Annual Technical Conference. 2019.

BASIC-L: ~2.44billion parameters

CAIT-M-48-448: ~438million parameters

ResNet50: ~25million parameters

Thus, understanding the profilers and monitoring tools for GPUs is necessary.

Profilers

PyTorch Profiler

• Trace-based

• Runs as part of the
training process

• Easier to use
• a few lines of

additional code

3

NVIDIA Nsight Systems (nsys)

• Trace-based system-wide

• Runs as a separate process

• More detailed insights to OS
& network

• Doesn’t work when Multi-
Instance GPU (MIG) is
enabled on the GPU

NVIDIA Nsight Compute (ncu)

• Kernel-level tracing of
microarchitectural behavior

• Runs as a separate process

• Intrusive to program
behavior
• Runs the program several

times

Ehsan Yousefzadeh-Asl-Miandoab et al. “Profiling & Monitoring Deep Learning Training Tasks”

Monitoring tools

NVIDIA System Management
Interface (nvidia-smi)

• Performance configuration
(frequency changing, MIG config)

• Tracking a range of high-level
performance metrics
• GPU Utilization

• Memory Consumption

• …

• Doesn’t monitor MIG instances

4

NVIDIA Data Center GPU Manager
(dcgm)

• Easier management by grouping
option

• Finer-grained performance metrics
for monitoring
• SM Active (SMACT)

• SM Occupancy (SMOCC)

• …

• Can monitor MIG instances

Ehsan Yousefzadeh-Asl-Miandoab et al. “Profiling & Monitoring Deep Learning Training Tasks”

Experimental Setup
• Goal: Understanding GPU utilization metrics; overheads and strengths of the tools

• Experiment 1: A microbenchmark to analyze GPU utilization metrics

• Experiment 2: Model runs to analyze the overheads
• On PyTorch 1.13.1 with 5 epochs
• Light workload: Small CNN on MNIST
• Heavy workload: ResNet50 on ImageNet, batch-size = 32

• Hardware: NVIDIA DGX A100 Station
• 4X A100 40 GB
• 1X EPYC 7742, 64 cores
• RAM: 512 GB

• Tools
• Default settings for PyTorch Profiler and Nsight Systems
• Omitted Nsight Compute due to its intrusive nature

5Ehsan Yousefzadeh-Asl-Miandoab et al. “Profiling & Monitoring Deep Learning Training Tasks”

GPU Utilization

6

• GPU Utilization: % of time one or more kernels were executing on the GPU

• GRACT: % of time any portion of the graphics or compute engines were active

• SMACT: the fraction of active time on an SM, averaged over all SMs

• SMOCC: degree of parallelism / max supported parallelism on SM

Ehsan Yousefzadeh-Asl-Miandoab “Orchestration of Deep Learning Tasks on CPU-GPU Co-Processors for Multi-Tenant Settings”

Coarser-grained utilization metrics can be misleading.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 8

3
2

1
2

8

2
5

6

5
1

2

1
0

2
4 1 8

3
2

1
2

8

2
5

6

5
1

2

1
0

2
4 1 8

3
2

1
2

8

2
5

6

5
1

2

1
0

2
4 1 8

3
2

1
2

8

2
5

6

5
1

2

1
0

2
4 1 8

3
2

1
2

8

2
5

6

5
1

2

1
0

2
4 1 8

3
2

1
2

8

2
5

6

5
1

2

1
0

2
4 1 8

3
2

1
2

8

2
5

6

5
1

2

1
0

2
4

1 128 512 1024 2048 4096 8192

U
ti

liz
at

io
n

#threads (upper), #thread_blocks (lower)

GPU Utilization
mean

GRACT mean

SMACT mean

SMOCC mean

Coarse-grained

Fine-grained

Time overhead of tools Average Epoch Time

7

9.61 9.66 9.61 9.68 9.88

13.65

0

2

4

6

8

10

12

14

16

Ti
m

e
(s

ec
o

n
d

s)

light
37.06 37.11 37.04 37.19 39.13

0
5

10
15
20
25
30
35
40
45

Ti
m

e
(m

in
u

te
s)

heavy

H
ig

h
 O

ve
rh

e
ad

Ehsan Yousefzadeh-Asl-Miandoab et al. “Profiling & Monitoring Deep Learning Training Tasks”

➔Monitoring tools have negligible time overhead.
➔ Profilers’ overhead is noticeable.

➔ Profiling just for one iteration might be enough.

Space overhead of tools

Tool Small CNN ResNet50

top ~20KB ~2MB

nvidia-smi ~20KB ~2MB

dcgm ~85KB ~8MB

nsys ~40MB ~5GB

pytorch ~1.4GB -

8Ehsan Yousefzadeh-Asl-Miandoab et al. “Profiling & Monitoring Deep Learning Training Tasks”

➔ Trends for space overhead are similar to time overhead for all tools.

CPU overhead

9Ehsan Yousefzadeh-Asl-Miandoab et al. “Profiling & Monitoring Deep Learning Training Tasks”

Training processes Tools’ processes

➔ CPU usage overhead of profiling tools is higher than monitoring ones.
➔ Profiling tools also need time for post-processing of collected traces.

Light model

CPU memory overhead

10Ehsan Yousefzadeh-Asl-Miandoab et al. “Profiling & Monitoring Deep Learning Training Tasks”

Training processes Tools’ processes

Memory overhead of profiling tools is also higher than monitoring tools’!

Light model

GPU overhead

11Ehsan Yousefzadeh-Asl-Miandoab et al. “Profiling & Monitoring Deep Learning Training Tasks”

GPU overhead of all the tools is negligible!

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

d
cg

m

n
vi

d
ia

-s
m

i

n
sy

s

p
yt

o
rc

h

d
cg

m

n
vi

d
ia

-s
m

i

n
sy

s

p
yt

o
rc

h

d
cg

m

n
vi

d
ia

-s
m

i

n
sy

s

p
yt

o
rc

h

d
cg

m

n
vi

d
ia

-s
m

i

n
sy

s

d
cg

m

n
vi

d
ia

-s
m

i

n
sy

s

d
cg

m

n
vi

d
ia

-s
m

i

n
sy

s

SMACT SMOCC DRAMA SMACT SMOCC DRAMA

light heavy

U
ti

liz
at

io
n

tool, metric, model size from top to bottom

mean

max

Summary – Insights
• For model level optimization purposes

• Use framework specific profilers

• For digging deeper into OS and system
• Use Nsight Systems

• For kernel-level optimizations
• Use Nsight Compute

• Profile the needed amount of code for a reasonable range of time
• Profiling for an iteration might be enough to show the behavior of training a model

• For online decision-making purposes
• Use monitoring tools with representative fine-grained metrics

12

Thanks! ☺
Ehsan Yousefzadeh-Asl-Miandoab et al. “Profiling & Monitoring Deep Learning Training Tasks”

	Slide 1
	Slide 2: GPU Underutilization for ML Workloads
	Slide 3: Profilers
	Slide 4: Monitoring tools
	Slide 5: Experimental Setup
	Slide 6: GPU Utilization
	Slide 7: Time overhead of tools
	Slide 8: Space overhead of tools
	Slide 9: CPU overhead
	Slide 10: CPU memory overhead
	Slide 11: GPU overhead
	Slide 12: Summary – Insights

