
Manage the Workloads, not the Cluster:
Designing a Control Plane for Large-Scale AI Clusters

Ruiqi Lai1 Siyu Cao1 Leqi Li1 Luo Mai2 Dmitrii Ustiugov1
1NTU Singapore 2University of Edinburgh

Abstract
The rapid adoption of large language model (LLM) services,
such as ChatGPT and DeepSeek, has created unprecedented
demand for computational resources, particularly on accelerator-
equipped clusters (e.g., GPUs, NPUs). Theseworkloads present
unique challenges due to their highly dynamic traffic pat-
terns and multi-dimensional resource demands, including
power, memory, and computing. Existing GPU cluster man-
agement systems fall short, as they treat accelerators as
monolithic units and allocate resources once at the placement
time, leading to imbalanced utilization of the above three
resource types across the cluster. To address these issues, we
propose redefining the LLM serving cluster management as a
bin-packing problem, where the resource-specific budgets ab-
stract away hardware resources. We introduce Shapeshifter,
the cluster manager that dynamically adjusts the workload
deployments to balance the utilization levels of all three re-
sources in the GPUs across the cluster. Shapeshifter monitors
resource demands of LLM workload, abstracts away hard-
ware resources with multi-dimensional resource budgets and
continuously re-balances resource utilization of LLM work-
load before allocation of hardware resources. ShapeShifter
aims to increase GPU cluster utilization and deployment
density while delivering high-quality LLM inference serv-
ing. Key future research directions include exploring multi-
dimensional model placement, exploring rapid resource re-
balancing mechanisms without service disruption, and effi-
cient scheduler policy design.

ACM Reference Format:
Ruiqi Lai1 Siyu Cao1 Leqi Li1 Luo Mai2 Dmitrii Ustiugov1
, 1NTU Singapore 2University of Edinburgh . 2025. Manage the
Workloads, not the Cluster: Designing a Control Plane for Large-
Scale AI Clusters. In The 5th Workshop on Machine Learning and

Please use nonacm option or ACM Engage class to enable CC li-

censes
This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1538-9/2025/03
https://doi.org/10.1145/3721146.3721937

Systems (EuroMLSys ’25), March 30-April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3721146.3721937

1 Introduction
Emerging LLM services have started to revolutionize the
computing industry. Services, such as ChatGPT [16] and
DeepSeek [5], have amassed hundreds of millions of users.
This massive user base has generated substantial demand
for computing resources. Large language models (LLMs) are
typically deployed on accelerator-equipped clusters (GPUs,
NPUs), which are renowned for their high costs and intensive
resource consumption. Consequently, providing efficient and
reliable services becomes a critical problem.

LLM online serving workloads pose unique challenges for
data center architecture and cluster management. First, a
large fraction of the application is user-facing, exhibiting
highly dynamic traffic [12, 17]. Such a dynamic traffic pat-
tern will lead to corresponding variations in resource usage
for LLM workloads. Second, LLM workloads feature multi-
dimensional resource demands. In addition to conventional
memory and computational resources, a key characteristic
of LLM workloads is their power-intensive nature [18, 24].
This implies that a successful cluster manager must account
for all resource dimensions, including the power supply of
the data center.
Our studies characterize the multi-dimensional resource

usage of LLM workloads, including power, memory, and
computing resources, under highly dynamic, volatile pat-
terns. We reveal that these resources do not strongly cor-
relate with one another. Moreover, we find that any of the
above resources can become a bottleneck depending on the
ever-changing characteristics of traffic.
Designing an efficient LLM-serving cluster management

system is key to satisfying the growing demand for multi-
dimensional resources by maximizing the utilization of avail-
able hardware. Prior work in GPU cluster management falls
short of addressing this need for several reasons. First, exist-
ing systems treat GPUs (and other accelerators) asmonolithic
black boxes [9, 21, 26] and only consider their overall uti-
lization [17, 23], ignoring the multi-dimensional resource
demand of LLM workloads. Second, current systems lack

246

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3721146.3721937
https://doi.org/10.1145/3721146.3721937
https://doi.org/10.1145/3721146.3721937


EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands
Ruiqi Lai1 Siyu Cao1 Leqi Li1 Luo Mai2 Dmitrii Ustiugov1

1NTU Singapore 2University of Edinburgh

a mechanism that can dynamically adjust the demands of
specific resource types [24], leading to imbalanced resource
utilization in the cluster.
To address these challenges, we propose to model LLM

online service management as a bin-packing problem. We
abstract the hardware resources within the cluster, such as
GPUs, as fundamental resource allocation units. For instance,
a single GPU provides a certain amount of memory, compu-
tation, and power resources. We then periodically monitor
the multi-dimensional resource demands across the cluster.
By tracking metrics such as token count and request vol-
ume, estimating the current resource requirements becomes
straightforward. The role of our cluster manager is to min-
imize the number of bins (GPUs) needed to satisfy these
demands.

For concrete cluster management operations, we propose
managing workload resource demands instead of managing
cluster resource allocation. We introduce Shapeshifter that
dynamically adjusts the resource demands of LLMworkloads,
by devising resource demands from the LLM workloads, pro-
jecting resource budgets based on the hardware characteris-
tics, and continuous re-evaluation and re-balancing of the
cluster resources utilization.
With Shapeshifter, we open a new perspective on LLM

serving cluster management, which can increase GPU clus-
ter resource utilization, improving deployment density and
overall system performance. First, more research is neces-
sary to find methods for exploring and navigating the multi-
dimensional space of model instance deployment and place-
ment atop of the heterogeneous cluster hardware. Second,
we need to design efficient scheduling and placement poli-
cies able to solve the multi-dimensional bin-packing prob-
lem within the acceptable time ranges. Finally, we will de-
sign novel approaches and mechanisms for continuous re-
balancing of the cluster resources without service downtime.

2 Background
2.1 LLM Inference Workloads
LLM inference processes user requests, where each request
comprises multiple tokens—individual units of text, such
as words, subwords, or characters, that the model uses to
understand and generate responses. LLM inference gener-
ates tokens in an auto-regressive way, which means previ-
ous output tokens will be used as the input to generate the
next token. Generating the first token is defined as the pre-
fill phase while generating subsequent tokens is defined as
the decode phase. Typically, the decode phase dominates a
request’s end-to-end latency. During this procedure, LLM

Figure 1. GPU hardware layout.

inference needs to store the KV-cache to speed up process-
ing, which contains the self-attention results from previous
tokens. KV-cache has a one-to-one correspondence with the
processing tokens, so the memory demand of LLM inference
grows linearly with the processing token number. LLM in-
ference’s compute resource usage scales proportionally with
the current batch size [4].

2.2 Hardware Layout of GPU Cluster
Current LLM inference workloads are deployed on GPU clus-
ters with complicated interconnection topology and possible
heterogeneous configuration.
Fig. 1 shows the typical hardware layout of GPU in the

data center. GPU nodes reside in racks in data centers. Each
node features multiple GPUs. Each GPU provides a complete
set of resources as a unit. Datacenters use power distribution
units (PDU) to power up racks. Although data centers can
adjust the number of PDUs one rack has, modern data centers
prefer to provide power in a uniform distribution. The data
center should provide power to racks roughly similar to all
other racks within the same data center. This indicates that
the power supply to each rack is constant.
With a constant power supply on each rack, datacen-

ters often oversubscribe rack power [3, 6, 19]. In Fig. 1, we
mark those over-subscribed GPU servers in red. The over-
subscription ratio is determined by the ratio of power density
to the power supply.

2.3 Power Oversubscription
The industry trends reveal that the demand for power, mem-
ory and computing continues to grow exponentially [20,
22, 25]. As a result, the power density is increasing dramat-
ically while the data center and rack-level power supply
remain fixed [7, 8, 13]. This growing power density pushes
the providers to over-subscribe the rack power, leading to
the dark-rack effect, resulting in the impossibility of power-
ing up all GPU nodes, or all GPUs, in a rack simultaneously,

247



Manage the Workloads, not the Cluster:
Designing a Control Plane for Large-Scale AI Clusters EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

CPU 
Server

DGX 
A100

DGX 
H100

DGX 
B200

0

20

40

60
Ra

ck
 P

ow
er

(k
W

)
Power supply

Figure 2. Rack power for different type of servers.

making power one of the key limiting factors for the LLM
inference cluster operation.

Datacenters use power distribution units (PDU) to power
up racks. Although data centers can adjust the number of
PDUs one rack has, modern data centers prefer to provide
power in a uniform distribution. The data center should
provide power to racks roughly similar to all other racks
within the same data center. This indicates that the power
supply to each rack is constant.

The power oversubscription ratio is growing. Fig. 2 shows
the power density of several recent GPU servers and CPU
servers. We use the dashed line to indicate the power supply
of a conventional, non-AI rack [2, 10]. Compared to tra-
ditional CPU servers, recent GPU servers’ power demand
is increasing from year to year. Therefore, we project the
power oversubscription ratio will also grow in response to
this rapidly growing power-demand trend in GPU servers.

2.4 Existing GPU Cluster Manager
GPU cluster manager typically comprises the request router,
load balancer and GPU manager. When requests arrive, the
cluster manager routes them to different GPUs. GPU man-
ager periodically monitors the cluster status and adjusts the
cluster size with GPU allocation, deallocation, and live mi-
gration.

However, existingGPU clustermanagers allocate resources
as an entire GPU, which tightly couples the resources; hence,
compute, memory, and power resources cannot be adjusted
separately, as in CPU schedulers [1]. Prior works typically
focus on one dimension of resources. DynamoLLM [24] is
the state-of-the-art GPU cluster manager that solely focuses
on power consumption. Singularity [23] focuses only on
memory usage. Finally, ServerlessLLM [9] focuses on queue
occupancy but disregards the utilization of individual re-
sources.

Therefore, existing cluster managers lack a holistic ap-
proach that considers all key dimensions, including memory,
computing, and power.

3 Workload Characterization
In the following sections, we will study the correlation of
the utilization profiles of the three key resources in GPU
clusters: computing, memory capacity, and power, with a set
of micro-benchmarks to demonstrate that the system need
to account for all the above resource dimensions.

3.1 Methodology
We develop a load generator that can generate LLM infer-
ence traffic load. The load generator can up-sample or down-
sample the original traces to simulate different traffic load.
In the following experiments, we sweep the traffic load and
send requests to LLM inference engine, after requests get pro-
cessed, we record their end-to-end latency. To normalize the
latency of requests with different lengths, we use slowdown
instead of absolute end-to-end latency in Fig. 5. We calculate
each request’s latency slowdown with the unloaded latency
of the same request. For each request, the unload latency is
calculated on a single GPU of the same type to fairly evaluate
performance degradation under load for requests with short
and long prompts:

Slowdown =
Latencyin a GPU cluster under load
Latencyon a single GPU in isolation

In the following experiments, we use a one-hour trace
from Azure[12], and use vLLM[11] as the inference engine
because it is the state-of-the-art LLM inference engine. We
choose Meta’s Llama3-8B model. In the following experi-
ment, we use A100-40GB GPU if not otherwise stated. The
setup is with a similar memory capacity ratio of the down-
scaled Llama3- 70B (141GB) on an NVIDIA B200 (192GB).

3.2 LLM Resource Demand Correlation
Existing GPU clusters allocate cluster resources at the coarse
granularity of entire GPUs and often monitor the utilization
of a single resource type, e.g., memory [17, 23], comput-
ing [17] and power [24]. Instead, we advocate for a holistic
approach accounting for all resource types. The questions we
ask here are: First, do all resource types in the LLMworkload
strongly correlate? Second, what key resource types should
the GPU cluster manager monitor in the LLM workload? To
answer whether resources of LLM inference correlate with
each other, we measure the compute, memory, and power us-
age when replaying the real LLM inference trace on a single
NVIDIA A100-40GB GPU with Llama3-8B model. We mea-
sure power usage using nvidia-smi using the Power Draw

248



EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands
Ruiqi Lai1 Siyu Cao1 Leqi Li1 Luo Mai2 Dmitrii Ustiugov1

1NTU Singapore 2University of Edinburgh

00 20 40
Time (s)

28
0

32
0

36
0

40
0

44
0

Po
w

er
 (

W
)

Power
Compute
Memory

P M C

P

M

C

1.00 0.65 0.18

0.65 1.00 0.60

0.18 0.60 1.00

3

6

9

12

Co
m

pu
te

 (
re

q/
s)

0.0
0

0.0
4

0.0
8

0.1
2

0.1
6

M
em

or
y 

(g
pu

 c
ac

he
 u

sa
ge

) 0.5 1.0

Figure 3. Various resources usage over a minute in the trace
(left): The shadowed areas show strong correlation while
others do not. Pearson correlation matrix for an hour-long
trace (right): C, M, P stand for compute, memory, power,
respectively.

counter. We profile GPU memory usage with the KV-cache
usage metric, which is vLLM runtime’s metric that shows
the fraction of the total available memory space in GPU oc-
cupied by the KV-cache. We profile compute usage by mea-
suring a proxy counter: we measure the number of requests
processing concurrently reported by the vLLM runtime in-
stead of directly measuring FLOPs[14, 15] because the latter
approach introduces substantial slowdown.

The left part of Fig. 3 shows the memory, computing, and
power resources usage over one minute taken during the
replay of the full trace for illustration of the trends. The
right part of the figure shows their Pearson correlation ma-
trix collected during the replay of the whole, one-hour-long
trace. Surprisingly, we observe that resources do not cor-
relate strongly in a general case. For example, the three
resources show a high correlation during the first shaded
area (0 to 5 seconds), while at the end of this minute, the
three resources show different trends in the second shaded
area (55 to 60 seconds). The right subplot of Fig. 3 shows
the correlation matrix captured over the entire period of the
one-hour trace replaying. It indicates that power resource
usage does not highly correlate with memory or computing
resource usage. Although memory and computing resources
show a high correlation over the entire one hour, it’s clear
that the correlation does not always hold within shorter pe-
riods. The poor correlation we identified between the three
resources can be attributed to two reasons. First, a single in-
ference comprises tens of GPU kernels with diverse resource
requirements, and each GPU executes tens to hundreds of
requests in batches. The requests can arrive and finish at any
time due to the continuous batching [11], which might cause
resource utilization variability. Second, we also observe that
the vLLM runtime metrics can lag behind request execution

by 0.5-1.5 seconds, the impact of which is difficult to deter-
mine with the existing measurement systems. The obtained
results suggest that the desired GPU cluster control plane
must rely on carefully measuring each of these dimensions
to drive the placement and load balancing optimizations.

Next, we use two micro-benchmarks to showcase that any
of these three resource types can become the bottleneck.

3.3 Memory and Compute as the Bottleneck

100 101 102

Number of Requests

1.0

1.5

2.0

2.5

Sl
ow

do
w

n

Memory bottleneck
 Compute Occupancy: 0.25

(a) Requests served in the long-
request pool.

100 101 102 103

Number of Requests

2

4

6

Sl
ow

do
w

n

Compute bottleneck
 Memory Occupancy: 0.26

(b) Requests served in the short-
request pool.

Figure 4. Latency slowdown of requests served in long-
request pool and short-request pools vs. the number of re-
quests in a batch.

LLM inference serving memory resource demand is pro-
portional to the number of tokens, which is the sum of the
input and output length of the served requests, while com-
puting resource demand is proportional to the number of
requests. However, the number of tokens can vary drasti-
cally among different requests and is unpredictable due to
the unpredictability of output token length. As a result, com-
puting and memory resources can become the bottleneck in
different situations. For the long requests with many tokens,
memory resources are likely to run out before computing re-
sources. In contrast, for short requests, computing resources
are more likely to become the bottleneck.
State-of-the-art cluster managers[24] separate requests

by token length, serving long and short requests in distinct
GPU pools to improve energy efficiency through tailored
power configurations. To evaluate this approach, we analyze
a system configured with two GPU pools, following the clas-
sification method of DynamoLLM, where "short" and "long"
requests are defined as the 5𝑡ℎ and 95𝑡ℎ percentile token
lengths in the Azure trace, respectively. Each pool employs
a single A100-40GB GPU.
We measure latency slowdown by sweeping the number

of requests processed in batches for both pools. Fig 4 illus-
trates the latency slowdown versus the number of requests.

249



Manage the Workloads, not the Cluster:
Designing a Control Plane for Large-Scale AI Clusters EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Ideal Full power 
w/o NVLink

Capped power 
w/ NVLink

0

10

Sl
ow

do
w

n P50
P99

Figure 5. 50𝑡ℎ and 99𝑡ℎ percentile latency slowdown for
requests served under three different configurations. 1. Ideal:
with NVLink but without power capping. 2. The GPUs are
in different racks, hence without NVLink. 3. The GPUs are
in the same rack with power constraints.

For long requests (Fig. 4a), latency increases sharply once
memory capacity is exhausted (marked by the dashed line),
as queuing delays dominate. For short requests (Fig. 4b),
latency increases when compute resources are saturated
(dashed line), reflecting the limited processing throughput.

The results highlight distinct bottlenecks: long requests
are constrained by memory capacity, while short requests
face compute limitations. This imbalance underscores how
LLM inference workloads exhibit divergent resource de-
mands depending on request characteristics. Resource un-
derutilization arises when compute or memory remains idle
due to this mismatch, suggesting opportunities for better
resource coordination.

3.4 Power as the Bottleneck
Existing GPU cluster managers try to allocate GPUs within
a node to leverage intra-node GPU interconnections like
NVLink. However, this layout increases the power density of
GPU servers.We assume that racks are uniformly powered in
datacenters, so increasing the power density of a single rack
will disrupt such uniform power distribution and force the
cluster manager to apply power capping to all the GPUs on
that rack. Another choice is to allocate GPUs across nodes to
decrease the power density of GPU servers, but this triggers
higher communication overhead.

To analyze trade-offs in power-constrained environments,
we model two real-world GPU deployment strategies under
rack power oversubscription and evaluate their performance
via a microbenchmark. First, we simulate co-located deploy-
ments where providers prioritize physical proximity and
NVLink-enabled communication but reduce GPU frequency
to comply with rack power limits. Second, we model scat-
tered deployments where workloads are distributed across

clusters without high-speed interconnects (e.g., NVLink) to
avoid localized power bottlenecks.

We evaluate these scenarios using vLLM on two NVIDIA
A5000 GPUs (chosen for administrative access), replaying
an Azure trace under three configurations. First, we set the
ideal case with full GPU power with NVLink enabled, repre-
senting unconstrained theoretical performance. The second
deployment is scattered deployment: Full GPU power with
NVLink disabled, simulating distributed workloads across
clusters lacking interconnects due to partial rack activation.
The third is co-located deployment: Capped GPU power (via
frequency limits) with NVLink enabled, reflecting power-
constrained but locality-optimized deployments. This setup
quantifies how each strategy contends with distinct bot-
tlenecks—scattered deployments sacrifice communication
efficiency, while co-located deployments trade peak compute
performance for power savings.

Fig. 5 shows the 50𝑡ℎ percentile and 99𝑡ℎ percentile slow-
down under the three conditions. Compared with its the-
oretical performance, full power without NVLink triggers
1.6×99𝑡ℎ percentile latencywhile capped powerwith NVLink
triggers 2.1 × 99𝑡ℎ percentile latency. We show that allocat-
ing GPU in either way can cause a performance degradation
compared to the theoretical performance.

4 ShapeShifter: Multi-Dimensional LLM
Cluster Manager

4.1 Holistic Cluster Resource Accounting
Micro-benchmarks in Sec 3 demonstrate that all the resource
dimensions can become the performance bottleneck in the
real online LLM serving system. Therefore, an efficient clus-
ter manager should not overlook any of them.

We formulate LLM clustermanagement as amulti-dimensional
bin-packing problem to address this challenge. Over a given
time period, our objective is to minimize the number of GPUs
(bins) required to meet the complete resource demands of
the current LLM workload.

To solve the multi-dimensional bin-packing problem, we
first need to estimate all resource demands across multiple
dimensions. We project each GPU as a multi-dimensional
resource bin. We can estimate memory resource demand by
combining the number of processed tokens and model repli-
cas deployed. We can derive the required compute resources
based on the total number of incoming requests. Finally, we
can evaluate the power demand using the aggregate power
consumption readings from all GPUs in the cluster. For ex-
ample, an NVIDIA A100 GPU provides 40GB of memory
resources, computational resources for up to 100 requests
(calculated based on the KV-cache footprint of the model)

250



EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands
Ruiqi Lai1 Siyu Cao1 Leqi Li1 Luo Mai2 Dmitrii Ustiugov1

1NTU Singapore 2University of Edinburgh

Figure 6. Top subfigure: resource allocation without reshap-
ing. Bottom subfigure: resource allocation with reshaping. M,
C, P stand for memory, compute, power, respectively.

and has 400W budget according to its TDP. By formulating
the problem in this way, we can determine an optimal allo-
cation strategy that minimizes the number of active GPUs
while ensuring that all resource constraints are satisfied.
This approach enables more efficient resource utilization,
reducing energy consumption and operational costs while
maintaining service performance.

However, under such modeling, the number of bins is de-
termined solely by the resource dimension with the largest
demand, i.e., the resource bottleneck. In § 3, we demonstrate
that all resource dimensions can become potential bottle-
necks in a real system and they do not always correlate. If
we allocate GPUs based on the bottlenecked resource type,
other dimensions of resources in allocated GPUwill be under
low utilization.

4.2 ShapeShifter Workload Manager
To solve the bin-packing problem, we propose to manage
the workload deployments rather than GPU assignment to
the models deployed in the cluster, as in the existing cluster
managers [9, 24]. We find that the LLM workload can be con-
ducted in multiple configurations with completely different
resource demands. For example, configurations such as the
parallelism strategy, parallelism levels, load balancing strat-
egy, and GPU power capping settings can all significantly
change the current resource demand in different dimensions.
Therefore, we propose that the cluster manager should aim
to re-balance the workload resource demands across multi-
ple dimensions before making placement decisions. Fig. 6
shows the difference between resource allocation without re-
balancing and with re-balancing. Since the resource demands
of LLM workload are initially unbalanced, with memory re-
source demand greatly surpassing the other two types of
resources, the cluster manager has to allocate two GPUs
to satisfy the memory demands. Such an allocation causes
low utilization of computing and power resources. On the

contrary, Shapeshifter can adjust the LLM deployment con-
figurations before proceeding to allocating resources. After
re-balancing, in this example, the cluster manager only needs
to allocate a single GPU. Such a re-balancing step signifi-
cantly improves resource utilization and reduces the number
of GPUs used to satisfy the resource demands of LLM work-
loads.

4.3 Challenges and Open Questions
Expanding Resource Monitoring and Modeling. While
current modeling focuses onmemory, computing, and power,
other resource dimensions—such as locality, network band-
width, and GPU heterogeneity, need deeper investigation.
Locality (e.g., data placement across GPUs/nodes) impacts
communication overhead, while network bandwidth con-
straints can throttle distributed LLM inference. Heteroge-
neous GPU clusters further complicate resource allocation,
as varying hardware capabilities (e.g., a cluster with both
NVIDIAA100 andH100, and AMDGPUs) require an abstract,
unified model to characterize LLM workloads across all di-
mensions. Future research must define generalized metrics
to quantify these factors and integrate them into the multi-
dimensional bin-packing framework. For instance, modeling
inter-GPU communication costs or dynamically adapting to
heterogeneous hardware profiles could prevent underutiliza-
tion and latency spikes.

ContinuousResourceRe-BalancingMechanismWith-
out ServiceDisruption.Adjustingworkload configurations
to balance resource demands is critical, but existing methods
often require shutting down and restarting LLM instances
disrupting the inference serving service. Rapid traffic fluctu-
ations require a mechanism to reconfigure parallelism strate-
gies, power caps, or load-balancing policies without down-
time. Achieving this necessitates low-overhead state migra-
tion techniques, such as migrating model weights and KV-
cache across GPUs. However, LLMs’ massive memory foot-
prints and stateful inference contexts (e.g., KV-caches) pose
significant technical challenges. Research into lightweight
reconfiguration protocols and live migration frameworks
could bridge this gap, enabling sub-second re-balancing to
match dynamic cluster conditions.
Efficient Scheduler Policy Design. Solving the multi-

dimensional bin-packing problem with reshaping introduces
a new space of scheduling possibilities. Brute-force approaches
are impractical for real-time decision-making, especially as
cluster scales grow. Efficient policies are needed to approx-
imate optimal allocations within milliseconds. Challenges

251



Manage the Workloads, not the Cluster:
Designing a Control Plane for Large-Scale AI Clusters EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

include balancing solution quality with computational over-
head and integrating reshaping actions (e.g., adjusting paral-
lelism levels) into the scheduling loop.

5 Related Work
Datacenter clustermanagement. In traditional CPU-centric
workload management, finer-grained resource scheduling
is becoming an emerging trend in cluster management. For
example, Borg [26] introduced the idea of assigning different
memory and compute resources to different tasks at an early
stage, with a unified cluster manager responsible for resource
allocation. More recent works, such as Quicksand [21], have
attempted to achieve even finer-grained resource scheduling.
They designed new user interaction models that decompose
a function into smaller fungible functions, which are then
executed by proclets—a fundamental resource scheduling
unit capable of migrating within milliseconds—to improve
cluster resource utilization.

However, these works still treat GPU resources as mono-
lithic scheduling units, lacking finer-grained, multidimen-
sional resource isolation. Simply applying traditional CPU
cluster optimization strategies to GPU clusters is also chal-
lenging. Unlike CPUs, which have well-established mech-
anisms for compute and memory isolation, GPUs still lack
mature virtualization solutions for effective resource isola-
tion at the hardware level.
GPU cluster management. For GPU cluster manage-

ment, there is currently no unified resource scheduling frame-
work. Most existing works focus on a single dimension of
resource allocation while neglecting the multidimensional
resource demands of large language models (LLMs). For ex-
ample, DynamoLLM [24] focuses on the power consumption
of LLMworkload, proposing separate GPU pools for different
types of requests. Splitwise [17] focuses on the memory and
computing demands of the prefill and decode phase in LLM
inference and proposes splitting GPU pools solely for the pre-
fill phase and the decode phase. ServerlessLLM [9] focuses on
optimizing the cold start latency of an LLM inference system
with scalability. However, it performs auto-scaling based on
queuemetrics, dismissing GPU hardware-relatedmetrics like
memory and compute utilization. Singularity [23] proposes
by mechanism including preemption, live-migration, check-
point saving and restoring to separate DNN workloads from
hardware deployments. However, their method focuses on
traditional DNN workloads, and will trigger large overhead
when dealing with LLM workloads, also, they only focus on
the utilization of GPU memory resources. Existing works on
GPU cluster management for LLM inference consider only
partial resource dimensions, leading to the underutilization

of certain resources. These approaches fail to optimize over-
all resource efficiency without a unified scheduling frame-
work that accounts for the multidimensional demands of
LLM workloads.

6 Conclusion
In conclusion,managing LLM serving clusters presents unique
challenges due to dynamic traffic patterns andmulti-dimensional
resource demands encompassing computing, memory, and
power. Existing GPU cluster management systems fall short
by treating accelerators as monolithic units and lacking dy-
namic adjustment mechanisms, leading to imbalanced re-
source utilization. We propose Shapeshifter, a cluster man-
ager that addresses these issues by modeling LLM service
management as a bin-packing problem, abstracting hardware
resources, and dynamically adjusting workload deployments
to balance resource utilization.
Shapeshifter offers a novel perspective on LLM serving

cluster management, aiming to increase GPU cluster re-
source utilization, decrease its operational and embodied
carbon footprint, and enhance the sustainability of LLM
serving systems. Future research directions include explor-
ing multi-dimensional model placement, developing rapid
resource re-balancing mechanisms, and efficient scheduler
policy design.

7 Acknowledgements
We express our sincere gratitude to Yao Fu from the Univer-
sity of Edinburgh for their valuable insights and contribu-
tions to this work. We also extend our appreciation to the
members of the HyScale Lab for their feedback and fruitful
discussions throughout this project. The NTU Seed Tier-1
grant supported this work.

References
[1] [n. d.]. Kubernetes. Available at https://kubernetes.io.
[2] NVIDIA [n. d.]. NVIDIA DGX SuperPOD: Data Center

Design Featuring NVIDIA DGX H100 Systems. NVIDIA.
https://docs.nvidia.com/dgx-superpod/design-guides/dgx-superpod-
data-center-design-h100/latest/electrical.html Accessed: February 11,
2025.

[3] Data Canopy 2024. 4 Tips to Avoid Oversubscribing to Power in Your
Data Center. Data Canopy. https://datacanopy.com/4-tips-avoid-
oversubscribing-power-data-center/

[4] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun
Kwatra, Bhargav S. Gulavani, Alexey Tumanov, and Ramachandran
Ramjee. 2024. Taming Throughput-Latency Tradeoff in LLM Inference
with Sarathi-Serve. In Proceedings of the 18th Symposium on Operating
System Design and Implementation (OSDI). 117–134.

[5] DeepSeekAI. 2025. DeepSeek-R1. https://huggingface.co/deepseek-ai/
DeepSeek-R1 Introduces DeepSeek-R1, a reasoning model comparable

252

https://kubernetes.io
https://docs.nvidia.com/dgx-superpod/design-guides/dgx-superpod-data-center-design-h100/latest/electrical.html
https://docs.nvidia.com/dgx-superpod/design-guides/dgx-superpod-data-center-design-h100/latest/electrical.html
https://datacanopy.com/4-tips-avoid-oversubscribing-power-data-center/
https://datacanopy.com/4-tips-avoid-oversubscribing-power-data-center/
https://huggingface.co/deepseek-ai/DeepSeek-R1
https://huggingface.co/deepseek-ai/DeepSeek-R1


EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands
Ruiqi Lai1 Siyu Cao1 Leqi Li1 Luo Mai2 Dmitrii Ustiugov1

1NTU Singapore 2University of Edinburgh

to OpenAI-o1 in math, code, and reasoning tasks. It highlights the
open-sourcing of DeepSeek-R1-Zero, DeepSeek-R1.

[6] Shoaib Akram, Joseph Izraelevitz, Christos Kozyrakis, Radhika Mittal,
Jennifer Switzer, Rachee Singh, and Rebecca Isaacs. 2021. Prediction-
Based Power Oversubscription in Cloud Platforms. In 2021 USENIX
Annual Technical Conference. https://www.microsoft.com/en-us/
research/uploads/prod/2020/10/Per-VM-Capping-ATC21.pdf Ac-
cessed: February 11, 2025.

[7] CoreSite. 2025. Facing the Data Center Power Density Chal-
lenge. https://www.coresite.com/blog/facing-the-data-center-power-
density-challenge Accessed 2025-02-10.

[8] Fierce Network. 2024. Cloud providers want to crank up rack power
for AI. https://www.fierce-network.com/cloud/cloud-providers-want-
crank-rack-power-10x-ai Accessed 2025-02-10.

[9] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii
Ustiugov, Yuvraj Patel, and Luo Mai. 2024. ServerlessLLM: Low-
Latency Serverless Inference for Large Language Models. In Proceed-
ings of the 18th Symposium on Operating System Design and Implemen-
tation (OSDI). 135–153.

[10] Steven Hambruch and Dennis O’Brien. 2024. DGX SuperPOD
Data Center Best Practices with DGX B200. Technical Report.
NVIDIA. https://docs.nvidia.com/nvidia-dgx-superpod-data-center-
best-practices-with-dgx-b200.pdf Accessed: February 11, 2025.

[11] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
2023. Efficient Memory Management for Large Language Model Serv-
ing with PagedAttention. In Proceedings of the 29th ACM Symposium
on Operating Systems Principles (SOSP). 611–626.

[12] Microsoft Azure. [n. d.]. Azure Public Dataset: Azure LLM In-
ference Trace 2023. Available at https://github.com/Azure/
AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.
md.

[13] Newmark. 2025. US data center power consumption to double by
2030. https://www.datacenterdynamics.com/en/news/us-data-center-
power-consumption/ Accessed 2025-02-10.

[14] NVIDIA. 2025. NVIDIA Nsight Compute. https://developer.nvidia.
com/nsight-compute Accessed: 2025.

[15] NVIDIA. 2025. NVIDIA Nsight Systems. https://developer.nvidia.
com/nsight-systems Accessed: 2025.

[16] OpenAI. 2024. ChatGPT. https://chatgpt.com ChatGPT helps you
get answers, find inspiration and be more productive. It is free to use
and easy to try. Just ask and ChatGPT can help with writing [4]..

[17] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo
Goiri, Saeed Maleki, and Ricardo Bianchini. 2024. Splitwise: Efficient
Generative LLM Inference Using Phase Splitting. In Proceedings of
the 51st International Symposium on Computer Architecture (ISCA).
118–132.

[18] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri, Brijesh
Warrier, Nithish Mahalingam, and Ricardo Bianchini. 2024. Charac-
terizing Power Management Opportunities for LLMs in the Cloud. In
ASPLOS (3). 207–222.

[19] T. Patki. 2023. Towards Safe Power Oversubscription and Energy Ef-
ficiency of Data Centers. Ph. D. Dissertation. University of South
Florida. https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=
10164&context=etd Accessed: February 11, 2025.

[20] Precedence Research. 2025. In-Memory Computing Market. https:
//www.precedenceresearch.com/in-memory-computing-market Ac-
cessed 2025-02-10.

[21] Zhenyuan Ruan, Shihang Li, Kaiyan Fan, Marcos K. Aguilera, Adam
Belay, Seo Jin Park, and Malte Schwarzkopf. 2023. Unleashing True
Utility ComputingwithQuicksand. In Proceedings of The 19thWorkshop
on Hot Topics in Operating Systems (HotOS-XIX). 196–205.

[22] Tao Xu Hongyang Chen Schahram Dustdar Sylvain Gigan Deniz Gun-
duz Ekram Hossain Shiqiang Zhu, Ting Yu. 2024. Intelligent Com-
puting: Concepts, Methodologies, and Applications. Intelligent Com-
puting 2024, Article ID 0006 (2024), 1–XX. https://doi.org/10.34133/
icomputing.0006 Accessed 2025-02-10.

[23] Dharma Shukla, Muthian Sivathanu, Srinidhi Viswanatha, Bhargav S.
Gulavani, Rimma Nehme, Amey Agrawal, Chen Chen, Nipun Kwatra,
Ramachandran Ramjee, Pankaj Sharma, Atul Katiyar, Vipul Modi, Vaib-
hav Sharma, Abhishek Singh, Shreshth Singhal, KaustubhWelankar, Lu
Xun, Ravi Anupindi, Karthik Elangovan, Hasibur Rahman, Zhou Lin,
Rahul Seetharaman, Cheng Xu, Eddie Ailijiang, Suresh Krishnappa,
and Mark Russinovich. 2022. Singularity: Planet-Scale, Preemptive
and Elastic Scheduling of AI Workloads. CoRR abs/2202.07848 (2022).

[24] Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, and Esha
Choukse. 2024. DynamoLLM: Designing LLM Inference Clusters for
Performance and Energy Efficiency. In Proceedings of the 31st IEEE
Symposium on High-Performance Computer Architecture (HPCA).

[25] TechInsights. 2025. Memory Market Outlook: AI Demand and
Tight Supply Drive Resurgence. https://www.techinsights.com/
blog/memory-market-outlook-ai-demand-and-tight-supply-drive-
resurgence Accessed 2025-02-10.

[26] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster manage-
ment at Google with Borg. In Proceedings of the 2015 EuroSys Conference.
18:1–18:17.

253

https://www.microsoft.com/en-us/research/uploads/prod/2020/10/Per-VM-Capping-ATC21.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/10/Per-VM-Capping-ATC21.pdf
https://www.coresite.com/blog/facing-the-data-center-power-density-challenge
https://www.coresite.com/blog/facing-the-data-center-power-density-challenge
https://www.fierce-network.com/cloud/cloud-providers-want-crank-rack-power-10x-ai
https://www.fierce-network.com/cloud/cloud-providers-want-crank-rack-power-10x-ai
https://docs.nvidia.com/nvidia-dgx-superpod-data-center-best-practices-with-dgx-b200.pdf
https://docs.nvidia.com/nvidia-dgx-superpod-data-center-best-practices-with-dgx-b200.pdf
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md
https://www.datacenterdynamics.com/en/news/us-data-center-power-consumption/
https://www.datacenterdynamics.com/en/news/us-data-center-power-consumption/
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://chatgpt.com
https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=10164&context=etd
https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=10164&context=etd
https://www.precedenceresearch.com/in-memory-computing-market
https://www.precedenceresearch.com/in-memory-computing-market
https://doi.org/10.34133/icomputing.0006
https://doi.org/10.34133/icomputing.0006
https://www.techinsights.com/blog/memory-market-outlook-ai-demand-and-tight-supply-drive-resurgence
https://www.techinsights.com/blog/memory-market-outlook-ai-demand-and-tight-supply-drive-resurgence
https://www.techinsights.com/blog/memory-market-outlook-ai-demand-and-tight-supply-drive-resurgence

	Abstract
	1 Introduction
	2 Background
	2.1 LLM Inference Workloads
	2.2 Hardware Layout of GPU Cluster
	2.3 Power Oversubscription
	2.4 Existing GPU Cluster Manager

	3 Workload Characterization
	3.1 Methodology
	3.2 LLM Resource Demand Correlation
	3.3 Memory and Compute as the Bottleneck
	3.4 Power as the Bottleneck

	4 ShapeShifter: Multi-Dimensional LLM Cluster Manager
	4.1 Holistic Cluster Resource Accounting
	4.2 ShapeShifter Workload Manager
	4.3 Challenges and Open Questions

	5 Related Work
	6 Conclusion
	7 Acknowledgements
	References

