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Abstract
FPGAs are becoming increasingly important in the cloud and

data centers, especially as network-attached accelerators or

reconfigurable Network Interface Cards (NICs). In the cloud,

Remote Direct Memory Access (RDMA) over Converged Eth-

ernet (RoCEv2) has emerged as the de facto standard protocol

for data transport due to its low latency and high through-

put. However, RDMA has several access control weaknesses

limiting its applicability in the cloud. In this paper, we ex-

plore using machine learning-based deep packet inspection

(DPI) as an enhancement to an open-source FPGA RDMA

stack. The ultra low-latency ML model is integrated on the

RDMA datapath and allows for detection of specific con-

tent in RDMA payloads (e.g., executables) at a line rate of

100Gbps while using less than 1% of the available resources.

Compared with existing work, our solution operates on the

full message payload, at the transport level, and on a com-

plete RDMA stack without sacrificing compatibility with

RoCEv2 and its native performance characteristics, proving

its potential as an end-to-end solution.

CCS Concepts: • Hardware → Hardware accelerators; •
Networks → Network management; Cloud computing.

Keywords: FPGA, Remote Direct Memory Access (RDMA),

Deep Packet Inspection, Machine Learning
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1 Introduction
Modern data centers rely heavily on Remote Direct Memory

Access (RDMA) over Converged Ethernet (RoCEv2) for stor-

age services and data transport with RDMA accounting for

up to 70% of all traffic in a typical cloud network [3]. This

is also reflected in emerging implementations of RDMA on

FPGAs [38, 56, 35]. The key advantages of RDMA over clas-

sic networking protocols (TCP/IP and UDP) are low latency

and high throughput which are achieved through kernel-

bypass, zero-copy, and polling [30]. However, these tech-

niques bypass control mechanisms of the operating system

(OS) and therefore pose serious security concerns in the pub-

lic cloud. The RoCEv2-inherent access control mechanisms

are incapable of preventing side-channel attacks to estab-

lished communications, and due to the inherent nature of

the protocol, a hijacked connection exposes a strong attack

vector through direct memory access [32]. One proposed di-

rection for future research to harden RDMA-based cloud sys-

tems against malicious attacks is the enhancement of RDMA

NICs with hardware-based security mechanisms, therefore

enforcing strict access control rules while maintaining the

RDMA-specific performance advantages [39].

In this paper, we explore the use of FPGA-based SmartNICs

in the context of RDMA access control through on-datapath

deep packet inspection (DPI). Besides traditional application

acceleration [22, 17, 7, 14, 18], FPGAs are often utilized as

SmartNICs for on-data-path acceleration and offloading of

network virtualization functions [13]. This makes them a

suitable platform to explore offloading functionality to the

NIC. In this paper, we evaluate the possibility of leveraging

deep learning and symbolic regression techniques to im-

plement Deep Packet Inspection (DPI) capable of enforcing

strict RDMA access control based on allowed and prohib-

ited payloads. We show that DPI inspection at line rate can

be practically achieved in a high-throughput data center

environment. The contributions of the paper are:

• Exploring the use of deep learning and symbolic re-

gression techniques for packet inspection as a way to

extend the checks to full message payloads, instead

of just headers. Most previous works proposed rule-

based approaches [53] or ML-based DPI on aggregated

header information [21].

• Utilization of compression and approximation tech-

niques enabling 100G line-rate packet inspection. Our
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models perform inference in less than 50ns and use

less than 1% of the available resources, while achiev-

ing an accuracy close to 90% and also being able to

generalize to previously unseen packet types.

• We extend an open-source, fully RoCEv2-compatible,

100Gbps FPGA stack with DPI functionality without

compromising neither performance nor functionality

and evaluate our contributions on an end-to-end sys-

tem with Alveo FPGAs and Mellanox NICs connected

via a 100G switched network.

2 Background and Related Work
2.1 RDMA
RDMA can directly access the memory of a remote host

through either two-sided synchronous (RDMA SEND and RDMA
RECEIVE) or one-sided asynchronous operations (RDMA WRITE
and RDMA READ). In the latter case, the ACKing of RDMA

operations and subsequent memory accesses are entirely

handled by the remote-side NIC, underlining the key feature

of RDMA: host-bypassing with zero-copy, since incoming

traffic is not handled by the receiver-side OS [38]. RDMA

was originally intended for high performance computing

(HPC) [24], which has vastly different trust and security as-

sumptions from the public cloud [29]. Therefore, porting

of RDMA to the public cloud introduced various concerns,

mostly centered around three main vulnerabilities:

• Host-bypassing includes bypassing of all host-enabled

security and access control mechanisms residing in

the OS [30].

• The RDMA-standard lacks encryption and cryptographic

authentication, exposing both header- and payload-

included information to side-channel attacks [39].

• The security functions originally included in RDMA

such as memory protection domains and sequence

number checks have been proven to be insufficient,

making it relatively easy to hijack RDMA connec-

tions [32, 42] and exploit system weaknesses in mem-

ory management [44, 47].

Different solutions and partial improvements to these prob-

lems have been proposed, including changes to the control

flow of RDMA [30] and offloading of encryption to Smart-

NICs and switches [43, 52].

2.2 Network Access Control and Deep Packet
Inspection

A central piece of security in the public cloud are network

access control rules [4] that seek to prevent malware injec-

tion [36] and DDOS attacks [51]. Access control is especially

important for RDMA, due to its bypassing of OS control

mechanisms, which are normally used for enforcing net-

work rules. For example, well-known shellcode injection at-

tacks [31, 41] hidemalicious executables in network payloads

and utilize memory vulnerabilities, which have been exten-

sively described for RDMA [45], to gather control over the

entire system. Deep Packet Inspection (DPI) is one possible

solution for network access control. Opposed to traditional

packet inspection, DPI evaluates the payload of incoming

packets, instead of the headers or aggregated information,

imposing additional complexity due to the potential irreg-

ularity of payload content compared to structured headers.

Due to the strict performance requirements, FPGAs have

been considered for DPI due to their suitability for stream

computation [28]. Multiple FPGA-approaches have been dis-

cussed, including the aforementioned nondeterministic finite

automata [5], Bloom filters for efficient search in incoming

traffic [34], content-addressable memory (CAM) for expres-

sion matching [55, 57], and bitmaps for hashing [2].

The use of ML for DPI has been focused mostly on packet

classification [54] in software frameworks, and only rarely

on reconfigurable hardware. Presented systems forML-based

detection of malware in payloads [6, 1] stress the general

importance of the topic, but apply computationally heavy

convolutional neural networks (CNNs) on the host CPU for

TCP traffic. However, the very nature of OS bypassing in

RDMA limits the applicability of these models in a real sys-

tem. The complexity of deploying intrusion detection in a

full networked system is further underlined by previous

work on ML-based classification on FPGAs [49] that oper-

ates on derived and aggregated traffic features and has no

integration with an actual networking stack. To the best

of our knowledge, ML on FPGAs for low-latency and high-

throughput DPI, fully integrated with an RDMA stack, has

not been studied thus far. This combination of urgency and

performance-criticality is exactly the reason why offloaded

DPI as a form of access control is an interesting research

topic for RDMA out of all the networking protocols.

3 Architectural Implementation
3.1 Design overview
The general task of DPI can be summarized in four key steps:

• Input extraction, separating the packet payload and its

unique identifier from the accompanying header. A sin-

gle packet is received sequentially in multiple chunks

of equal width, dictated by the network bus width.

The maximum packet size is dictated by the maximum

transmission unit (MTU). Any messages larger than

the MTU are transmitted over several packets.

• Sequential inference of the ML-based DPI on the pay-

load chunks which is executed in parallel to the net-

work datapath, as demonstrated in Fig. 1.

• Aggregation of the individual decisions and forward-

ing to the networking stack, issuing an ACK or NAK.

The networking stack implements standard header process-

ing functions, cyclic redundancy checks (CRC) etc. on the

received packet. Towards the end of this packet processing
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pipeline, the acceptability of the packet has to be communi-

cated to the sender via an ACK or NAK. With the addition

of DPI, an ACK is only issued if the packet successfully

passed through the packet processing pipeline and has not

been flagged by the DPI module. Since the DPI decision and

packet processing pipeline only need to be merged at the end

of the processing pipeline, the inference latency of the ML-

based DPI module can be completely hidden by the packet

processing pipeline. This latency budget allows us to achieve

line-rate DPI without interfering with the processing flow

of the baseline networking stack.
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Figure 1. Architecture overview of the RDMA stack with

DPI on a parallel datapath.

3.2 Integration of DPI with RDMA
Our baseline RDMA stack

1
, which was extended with our

DPI (Fig. 1), is included in the open-source FPGA shell, Coy-

ote
2
[20]. The whole shell is built around 512-bit wide AXI4-

stream busses, capable of maintaining the 100 Gbps band-

width. Therefore, each packet is delivered in 512 bits chunks,

which also corresponds to the input dimensionality of our

ML models. Our DPI module is added as a side-channel to

the network processing pipeline (Fig. 1): incoming packets

on the datapath are consumed by a Payload Extractor, isolat-

ing the packet payload from its headers and the checksum,

and forwarding it to the DPI module. Alongside the payload,

the extracted Queue Pair Number (QPN) of the incoming

packets is forwarded to the Decision Aggregator as a unique

identifier of each RDMA connection, thus matching the DPI

decision to the respective packet and connection. There, the

1
GitHub repository: https://github.com/fpgasystems/fpga-network-stack

2
GitHub repository: https://github.com/fpgasystems/Coyote

DPI decisions are aggregated over the full length of the cur-

rent packet: as soon as one chunk of the packet gets flagged

as potentially malicious, the whole packet is also considered

malicious. However, our Decision Aggregator is modular

and easily extendable to only reject a packet after a certain

threshold of its chunks has been marked as malicious, mini-

mizing false positives. Finally, the QPN and the aggregated

decision are forwarded to the Extended Header-processing

step, where the final decision is issued: (i) an ACK, writing

the transmitted payload into host memory or (ii) a NAK,

discarding the potentially malicious packet.

To maintain 100 Gbps throughput, the side-channeled DPI

module must not block the processing of packets in the net-

work pipeline. The latency for the aggregated DPI decision

can be determined from the end-to-end latency of the ML

model 𝑙𝑀𝐿 , the initiation interval of this model 𝑖𝑖𝑀𝐿 , the gen-

eral overhead latency, 𝑙𝑂𝐻 , incurred by the Payload Extractor

and Decision Aggregator, the network bus width 𝐵𝑊 and

the 𝑀𝑇𝑈 . On the receiving FPGA, each clock cycle 𝐵𝑊 of

bytes are available. Then, the maximum number of chunks

in a single packet, and therefore, the maximum amount of

single ML decisions that need to be aggregated is equal to

𝑀𝑇𝑈
𝐵𝑊

. Therefore, the latency of the DPI module is given by:

𝑙𝐷𝑃𝐼 = 𝑙𝑀𝐿 + 𝑙𝑂𝐻 + 𝑖𝑖𝑀𝐿 · (
𝑀𝑇𝑈

𝐵𝑊
− 1) (1)

The packet processing pipeline in Coyote takes 44 clock

cycles (cc), with𝑀𝑇𝑈 = 4096 and 𝐵𝑊 = 64. As indicated by

Equation 1, the initial interval is the most important factor

in achieving the target latency and not causing system back-

pressure.

3.3 Quantized ML-based DPI on FPGAs
To tackle the problem of DPI for remote code injection via

RDMA, we consider quantized neural networks, due to their

high performance and low area on reconfigurable hardware,

as well and symbolic regression, a light-weight ML technique

used for fitting analytical equations to a dataset. Symbolic re-

gression can be seen as a generalization of linear regression,

using weights, as well as binary and unary operators, such

as 𝑥1 · 𝑥2, tanh(·), exp(·) etc. We train neural networks and

symbolic regression to distinguish between 512-bit binary

vectors obtained from the binary representation of executa-

bles and other files, such as PDF, CSV, DOCX, JPEG etc. A

subset of C and C++ binaries from two sources, The Pro-
gramming Homework Dataset For Plagiarism Detection [25]

and C++ Templates from GitHub [46], is compiled. For the

non-executable files, a subset of files with the following ex-

tensions is used:

• CSV, DOCX, PPTX, RTF, SQL, TXT and XLSX files

from Govdocs1 [15]
• PDF files from CC-PDF [10]

• JPEG images from ImageNet (ILSVRC-2012) [9]

150



EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Heer, Ramhorst, Alonso

Notably, instead of performing packet inspection on aggre-

gated header information, we perform DPI using models

trained on very small binary chunks obtained from the raw

binary representation of publicly available files. When choos-

ing the model architecture, the following hardware con-

straints are taken into consideration:

• Low initiation interval: As explained in Equation 1,

the initiation interval is the determining factor of DPI

latency. We aim for a initiation interval of 1, to avoid

any potential back-pressure and the need to buffer

out-standing packets.

• High operating frequency: To achieve the target net-

work throughput of 100Gbps, the entire network stack,

including DPI, needs to be clocked at 250MHz.

• Reconfigurability: As network threats and data center

hardware are constantly evolving, the hardware imple-

mentation of the ML model should be easy to update

and replace.

Given these requirements, we select the following con-

straints for our DPI model. First, to achieve reconfigurabil-

ity, the models are implemented with hls4ml [11, 12], an

open-source framework for low-latency neural network in-

ference on FPGAs, supporting both neural networks and

symbolic regression. Secondly, ML models operate on a se-

ries of matrix-vector multiplications. To achieve the target

initiation interval, all the multiplication stages must be able

to accept a new input every clock cycle, corresponding to all

multiplications being executed in parallel. Finally, we con-

sider small and quantized neural models that can fit into

on-chip memory and use logic elements for multiplication.

This approach keeps the area and congestion low to achieve

the target frequency.

For the neural network we select an architecture with

three hidden layers with 32, 64 and 64 units, and quantized

ReLU activation. The last layer has one output with the sig-

moid activation. The models are trained in QKeras [8] by

minimizing binary cross-entropy using the Adam [19] op-

timizer. For symbolic regression, we use SymbolNet [48] to

train the model, but contrary to the original work, which

minimized mean squared error (MSE), we include an addi-

tional output layer with sigmoid activation, which is better

suited for binary classification tasks. In both cases, the sig-

moid activation produces a probability, which can be used

to classify a packet, given a threshold, 𝑡 . To further mini-

mize resources and latency, the monotonically-increasing,

resource-heavy sigmoid can be removed during inference by

changing the threshold, 𝑡 , and performing the comparison

with an equivalent threshold, 𝑡 = ln( 𝑡
1−𝑡 ). Using the modi-

fied, but equivalent, threshold, 𝑡 , enables us to avoid comput-

ing exponentials and reciprocals that depend on run-time

parameters; instead our DPI module needs to only perform

a comparison between a fixed threshold and the run-time in-

put. The modified comparison can be executed in one clock

cycle using LUT comparators, compared to several clock

cycles and DSP blocks required to implement the sigmoid

calculation. Finally, symbolic regression relies on a series

of unary operators, such as sin(·), exp(·), tanh(·) etc. To
minimize the latency, resources and critical path incurred

by these operators, look-up tables stored in BRAM can be

pre-populated for an expected range of values, producing an

approximately correct output in one clock cycle. Assuming

a sufficiently large look-up table, the drop in accuracy is

negligible. Empirically, we determine that for our use cases

the tables should contain between 1,024 and 4,096 elements.

4 Results
4.1 DPI accuracy
For evaluation, we consider a ternary neural network and

symbolic regression (SR). Each architecture is trained 10

times, and, since the pool of available non-executable files

(PDF, CSV, JPEG etc.) is significantly larger than the pool of

compiled executables, a random subset of the data is sampled.

This process enables us to not only capture the stochastic

nature of training, but also any variance incurred from data

variation, which is likely to occur in a data center setting.

In a first experiment, we test the ability to distinguish ex-

ecutables from other files (e.g. PDFs, JPEGs, etc.). In total,

200,000 executable and 200,000 non-executable (mixture of

PDF, CSV, JPEG etc.) 512-dimensional, binary vectors, ob-

tained from the binary representation of at least 100 files

in both categories, are sampled. Any duplicate points are

removed before training. Due to the high input dimension-

ality, such occurrences are rare; however, they do occur for

executables: inspecting the compiled code shows a large

number of input vectors with all elements equal to zero. We

remove these and only keep one of these zero-vectors to

avoid skewing the training to one data point. The accuracy

results, calculated on a held-out set of 80,000 (20%) points,

including average accuracy, false positive (FPR) and false

negative (FNR) rate are reported in Table 1.

Table 1. Accuracy of DPI models distinguishing executables

from non-executable files over 10 trials.

Model Accuracy [%] FPR [%] FNR [%]

SR 95.31 ± 0.33 5.04 ± 0.53 4.33 ± 0.35

Ternary 97.83 ± 0.16 1.74 ± 0.37 2.59 ± 0.38

In the second experiment, we insert binary chunks found

in executables into non-executable files. The chunks can

vary in length (64, 128, 192, 256, 320, 384 or 448 bits long)

and are sampled randomly for training iteration. Similarly,

training for each architecture was conducted 10 times, each

time selecting 400,000 executable (incl. 200,000 from non-

executable vectors with embedded chunks) and 400,000 non-

executable (mixture of PDF, CSV, JPEG etc.) 512-dimensional,
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cates removed, predicted as executable, per file type. A high

value is desired for executables (detection rate), a low value

for all other data types (false positive rate).

binary vectors. The accuracy, FPR and FNR, obtained from

a held-out set of 160,000 (20%) points, are reported in Ta-

ble 2. By embedding chunks of lower dimensionality into

non-executable payloads, we show that our approach can

generalize to (i) networking systems with a different config-

uration, namely AXI4 Stream widths and (ii) identify subtle

changes in non-executable files. The latter is particularly

important for documents that can be corrupted with embed-

ded malcode [23] or JavaScript embeddings [40]. Due to the

added complexity and data augmentation, the overall accu-

racy drops slightly. However, it is important to note that the

values reported in Table 2 result from embedding extremely

small (as low as 64b) chunks of executables into documents,

corresponding to very few CPU instructions. Therefore, re-

alistic code injection attempts are expected to fill up the full

512b, corresponding to results shown Table 1.

Table 2. Accuracy of DPI models identifying executables

and non-executable payloads with embedded executables.

Model Accuracy [%] FPR [%] FNR [%]

SR 83.47 ± 0.57 13.11 ± 0.72 19.95 ± 0.58

Ternary 89.36 ± 0.39 6.25 ± 1.37 15.04 ± 0.86

This time, SR performed worse than the ternary model. A

possible reason for that is input pruning in SymbolNet [48].

To achieve low latency and avoid a cascade of complex math-

ematical operations in hardware, SymbolNet prunes a large

portion of the inputs. However, in our case, the inputs are

binary, hence, already sparse and additional pruning can

adversely affect the performance. For hardware and net-

working evaluation, we use the models trained with code

embedding. While SR achieves lower accuracy than the the

ternary neural network and has a higher FPR/FNR, we con-

sider accelerating it on the FPGA as it can offer significant

area savings and latency reductions, while still achieving

satisfactory accuracy for some applications.

4.2 DPI Generalizability and malware detection
To study the generalization of the proposed models, we also

evaluate the models on whole files, with varying extensions

and ranging in size from 154B to 22MB, and, report the frac-

tion of 512-bit chunks evaluated as executable in a given

file. By doing so, it is possible to identify any weaknesses

on specific file types, which is not possible from the over-

all accuracy reported in Tables 1 and 2 on a mixture of file

types. Importantly, the models are evaluated on previously

unseen files, previously unseen file types, as well as malware

executables.

• For a realistic evaluation of its capabilities, we tested

the trained ML models with 47 malware executables

from the VX-Underground collection [50], comprising

rootkits, Mirai-type viruses and backdoors as typical

for shellcode attacks, as well as virus-modified Linux

bash commands.

• For CSV, JPEG and PDF (extensions encountered dur-

ing training), files from the same source [15, 10] as

training files are used, but unseen during training.

• Finally, we consider file types not even encountered

during training: LOG and SWF from Govdocs1 [15],

and PNG from the SVHN dataset [26].

To avoid skewing the results for any possible duplicate

inputs, we again remove any duplicate 512-bit vectors within

a single file. The results are illustrated in Fig. 2, using the best

ternary and SR models. Both the ternary and SR model are

able to correctly identify more than 85% of the 512-bit chunks

in any given malware executable. On the other hand, for

non-executable files, the ternary model achieves consistent

performance, even on previously unseen data types, while

SR shows large variance and FPR, depending on the file

type. Generally, the FPR increases with the complexity of

the file (e.g. SWF, JPEG). Finally, while we acknowledge that

both the ternary and SR model exhibit a somewhat high

FPR at around 10%-20%, however, we argue that compared

to the detection rate of actual malware executable, there

exists a more than sufficient gap for efficient threshold and

thus correct rejection of malware. As future work, we plan

to extend the Decision Aggregator to be able to set such a

threshold determining the number of flagged packets in the

payload to reject the entire message.

4.3 Hardware evaluation
The best-performing ternary and SRmodels are implemented

with hls4ml. The resource consumption and latency are re-

ported in Tables 3. The resources are reported post-Place
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Table 3. Post-PnR resource consumption and timing of the

DPI models on Alveo U55C with 4ns clock period.

Ternary SR

LUT [%] 30062 [2.3%] 472 [0.04%]

FF [%] 11363 [0.4%] 271 [0.01%]

DSP [%] 0 [0%] 2 [0.02%]

BRAM [%] 0 [0%] 4 [0.05%]

Latency 11 cc [44 ns] 6 cc [24 ns]

Initiation interval 1 cc [4 ns] 1 cc [4 ns]

and Route (PnR) and the latency is reported from Vivado co-

simulation, and, confirmed in the following section, with net-

worked FPGAs and ChipScopes. Both models achieve ultra-

low latency, which can be hidden by the packet-processing

pipeline, and minimal resource consumption. While SR can

achieve an extremely low resource footprint, it comes at the

expense of accuracy and generalizability, which makes it a

potentially interesting approach for lower-dimensional tasks

such as header or metadata analysis. As expected, the SR

model uses more BRAM for storing the look-up tables; how-

ever, after operator pruning [48], the only unary operation

remaining was exp(·) and the BRAM utilization remained

low. Since hls4ml performs additional post-training quanti-

zation, a slight accuracy drop is observed when running the

model on hardware - the ternary model achieved an accuracy

of 89.66%, while the SR achieved an accuracy of 84.47%.

4.4 Network performance
Finally, we perform end-to-end networking experiments

with the ternary neural network for executable detection,

confirming line rate and 100Gbps throughput. The evalu-

ation was performed with the DPI-extended RDMA stack

deployed as part of the Coyote shell [20] on two Alveo U55C

accelerator cards, connected via a switched 100G-Ethernet

network. The Alveo U55C FPGAs play the role of a tradi-

tional NIC, implementing the packet processing pipeline, the

newly added DPI and finally, writing the packet to host CPU

memory, if deemed acceptable. The tests follow the idea of

the standard, open-source perftest library [27], with 1000

ping-pong exchanges of single messages for latency eval-

uation and large batches of 1000 messages for throughput

testing, both realized via one-sided RDMA WRITE operations.

Illustrated in Fig. 3, both throughput and latency across a

wide range of message sizes are within a 5% margin of differ-

ence for the RDMA stack with and without DPI, with those

differences being caused by inevitable network noise and

traffic in a non-isolated public cluster. This confirms that

DPI does not bottleneck the network.

In the second test, a commodity, ASIC-based NIC (Mel-

lanox ConnectX-5) was used to send various test payloads

to the DPI-enhanced FPGA-NIC. By transmitting both safe
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Figure 3. Comparison of RDMA with DPI (ternary ML

model) and baseline (no DPI) for RDMA WRITE operations.

and potentially malicious executables and observing the re-

sulting ACKs and NAKs issued by the FPGA-based NIC, we

could confirm the desired functionality of the design and

the full compatibility with the RoCEv2 protocol standard. It

could therefore be deployed in a heterogeneous networking

fleet with commodity NICs.

5 Conclusions
In this paper, we proposed leveraging the reconfigurability

of FPGAs to extend an open-source RDMA stack with DPI

enhancements. By integrating ultra-low latency neural net-

works and symbolic regression directly on the datapath, DPI

achieves line-rate performance without impacting latency

or throughput, while consuming less than 1% of resources.

The models are able to generalize to previously unseen data

types as well as systems with different configurations, in-

cluding varying bus widths. When evaluated on malware

executables, the models achieve a high classification rate. We

integrate our DPI module with a fully open-source, RoCEv2-

compatible RDMA stack due to the protocol’s inherent lack

of access control. However, our solution is not tied to RDMA;

instead it adopts standardized AXI4 Stream interfaces and is

therefore highly portable to various different FPGA-based

networking stacks such as TCP/IP [37, 33] or UDP [16]. In

conclusion, our approach showcases the advantages of FP-

GAs in the cloud and data centers as in-network SmartNICs,

which benefit from the unmatched on-datapath accelera-

tion for additional packet processing which is achieved with

streaming computation and the high degree of parallelism

available on reconfigurable fabric.
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