
Cross-Domain DRL Agents for Efficient Job Placement
in the Cloud-Edge Continuum

Theodoros Aslanidis
theodoros.aslanidis@ucdconnect.ie

University College Dublin
Dublin, Ireland

Sokol Kosta
sok@es.aau.dk

Aalborg University
Copenhagen, Denmark

Spyros Lalis
lalis@uth.gr

University of Thessaly
Volos, Greece

Dimitris Chatzopoulos
dimitris.chatzopoulos@ucd.ie
University College Dublin

Dublin, Ireland

ABSTRACT
The growing computational demands of modern applications
call for resource management strategies that effectively uti-
lize the strengths of both cloud and edge computing. Deep
Reinforcement Learning (DRL) has shown great promise
in addressing these challenges, offering advanced decision-
making capabilities that optimize resource allocation and
system performance. However, deploying DRL agents in
cloud-edge continuum infrastructures remains a significant
challenge due to their dependence on infrastructure-specific
state-action representations. This paper presents a novel
architectural framework for DRL agents that incorporates
feature extraction and adaptation mechanisms to enable
their seamless operation across diverse environments. By
transforming state features into an infrastructure-agnostic
representation, our approach reduces the need for exten-
sive retraining when system configurations change. Exper-
imental results show that our method outperforms both a
heuristic method and a DRL baseline algorithm while achiev-
ing faster convergence when infrastructure and workloads
change. This work is an important step forward in develop-
ing transferable and adaptable DRL solutions for real-world
cloud-edge resource management challenges.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1538-9/25/03
https://doi.org/10.1145/3721146.3721934

CCS CONCEPTS
• Computing methodologies→ Reinforcement learn-
ing; Dimensionality reduction and manifold learning;
• Computer systems organization → Cloud computing.

KEYWORDS
Deep Reinforcement Learning, Cloud-Edge Continuum, Re-
sourceManagement, Job Placement, State Abstractions, Cross-
Domain Transfer, Domain Adaptation, Transfer Reinforce-
ment Learning

ACM Reference Format:
Theodoros Aslanidis, Sokol Kosta, Spyros Lalis, and Dimitris Chat-
zopoulos. 2025. Cross-Domain DRL Agents for Efficient Job Place-
ment in the Cloud-Edge Continuum. In The 5th Workshop on Ma-
chine Learning and Systems (EuroMLSys ’25), March 30–April 3,
2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3721146.3721934

1 INTRODUCTION

Motivation. Cloud computing has revolutionized the way
computing resources are provisioned, offering centralized,
on-demand access to storage, processing power, and applica-
tions. This paradigm enables flexible, scalable, and collabora-
tive service deployment, making it a cornerstone of modern
computing infrastructures [29]. However, the rapid prolifera-
tion of Internet of Things devices and the resulting explosion
of data streams have exposed the limitations of centralized
cloud infrastructures, which increasingly struggle to handle
the computational load [1]. Edge computing addresses these
challenges by distributing processing and storage closer
to data sources, reducing latency and bandwidth demands
for real-time applications [31]. Despite its advantages, edge
computing often faces constraints in computational power,
which caused the emergence of the cloud-edge continuum.
This is a hybrid model that combines the strengths of both

276

https://doi.org/10.1145/3721146.3721934
https://doi.org/10.1145/3721146.3721934


EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands T. Aslanidis et al.

paradigms. The cloud-edge continuum combines robust, scal-
able resource management with local, real-time processing,
making it particularly suited for applications in smart cities,
healthcare, and other domains where both centralized con-
trol and fast responsiveness are essential [30]. Job placement
in cloud-edge continuum environments is a critical and re-
curring challenge, as continuous fluctuations in workload,
resource availability, and network conditions demand re-
peated, optimized decisions to maintain high service quality
and efficient resource utilization [29, 31]. Moreover, while
simple heuristics or rule-based approaches may offer an ini-
tial solution, they are generally inadequate for these complex
systems because they cannot dynamically capture and adapt
to the rapidly changing operational conditions inherent in
heterogeneous cloud-edge infrastructures [2, 30].
The inherent complexity and heterogeneity of the cloud-

edge continuum have motivated the integration of machine
learning techniques to optimize decision-making. Among
these, Reinforcement Learning (RL), and more specifically,
Deep Reinforcement Learning (DRL) has proven particularly
effective for managing dynamic, non-periodic user patterns
and making long-term, strategic decisions in such environ-
ments [8, 21, 28, 43, 45]. Various DRL paradigms, including hi-
erarchical [21], multi-agent [47], and multi-objective RL [14,
17], have been explored to improve scalability and adapt-
ability. Moreover, recent advances in meta-learning [9] and
continual reinforcement learning [16] have demonstrated
promising approaches for reusing and retaining knowledge,
enabling the development of more generalizable DRL agents
in real-world scenarios [26]. These frameworks expose DRL
models to a wide range of variances during training, pro-
moting better generalization to new tasks while applying
previously acquired knowledge without suffering from cata-
strophic forgetting [18, 25].

State of the art. These approaches mainly address variabil-
ity in workload distributions, ensuring robust performance
across different data inputs. While adapting to input distri-
butions is crucial for mitigating model degradation due to
domain shift and concept drift [20, 22], DRL solutions in real-
world scenarios face an even more pressing challenge: the
tight coupling between the state-action space of an agent and
the specific environment in which it is trained [23, 38, 40, 42].
When the underlying infrastructure changes due to hardware
upgrades, network reconfigurations, or resource allocation
adjustments, the state-action space may also change, render-
ing the agent unable to interact with the environment.

This issue, known as state-action dimensionmismatch [42],
is a fundamental problem in cross-domain transfer and do-
main adaptation. It requires redesigning and retraining agents
from scratch whenever the infrastructure changes, a prohib-
itively expensive process in terms of time and resources.

Recent works have focused on transferring knowledge
across tasks with mismatched state-action spaces. For ex-
ample, [7, 38] propose methods that learn compact latent
representations— via autoencoders or mutual information
objectives—to disentangle task-specific details from gener-
alizable features. Similarly, [32, 42] construct embedding
spaces for policy transfer across domains. While these meth-
ods have shown promise in structured environments such as
robotics (e.g., MuJoCo [36] locomotion tasks), they rely on
well-defined state-action representations. It is important to
note that although dynamic conditions—including fluctuat-
ing constraints and communication delays—are also present
in robotics, the nature and scale of these challenges in cloud-
edge infrastructures are fundamentally different. In robot-
ics, environmental variations typically stem from controlled
physical interactions and predictable task dynamics, whereas
cloud-edge systems must contend with highly volatile re-
source availability, heterogeneous hardware configurations,
and complex, multi-hop network topologies. Consequently,
while cross-domain RL approaches from robotics provide
valuable insights, they do not fully address the unique state-
action mismatches and the extensive variability inherent in
cloud-edge resource management.

Other works in cross-domain RL have explored policy rep-
resentation and transfer in more heterogeneous settings. For
example, [15, 44] propose techniques for adapting policies
across domains, while [6, 42] extend these ideas by integrat-
ing learned state abstractions and knowledge transfer mecha-
nisms. However, these methods often assume that source and
target tasks share some underlying structure or similarity,
which may not hold in practical scenarios like cloud-edge
resource management. Additionally, while disentangled rep-
resentation learning [13, 39] and autoencoder-based state
representation learning [5, 19, 41], have been proposed to
capture domain-invariant features, they primarily focus on
robotics or simulation settings. These approaches do not
address the unique challenges of cloud-edge infrastructures,
such as fluctuating resource constraints, dynamic network
topologies, and hardware heterogeneity, which significantly
impact RL adaptation.
Some works have explored transfer learning in the con-

text of cloud-edge environments but do not address state-
action mismatches caused by infrastructure changes. For
example, [46] proposes a framework for cloud-edge collab-
orative DRL, focusing on knowledge distillation between
heterogeneous agents. Similarly, [33] introduces a transfer
RL framework for adaptive task offloading, using domain
adaptation to align heterogeneous characteristics of mobile
devices. Finally, [35] proposes a hybrid cloud-edge control
strategy using transfer DRL, relying on fine-tuning and do-
main adaptation networks. While these methods improve
convergence and adaptability, they assume that state-action

277



Cross-Domain DRL Agents for Efficient Job Placement in the Cloud-Edge Continuum EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

spaces remain consistent across tasks, limiting their applica-
bility when infrastructure changes.

This challenge is particularly acute in modern cloud-edge
computing infrastructures, which are highly dynamic and
heterogeneous. Variations in datacenter configurations driven
by differences in hardware, network topologies, and resource
allocation policies are common, as are changes caused by
equipment upgrades or failures. These variations pose sig-
nificant challenges for DRL agents, as those trained on one
infrastructure often struggle to generalize to others, or may
become entirely incompatible. Without mechanisms for effi-
cient adaptation, DRL approaches that do not handle cross-
domain transfers and state-action space mismatches become
obsolete, requiring new state-action space designs and re-
training from scratch with every system change.

Contributions. To address the challenge of state-action
dimension mismatch, we propose a novel framework that
decouples DRL agents from domain-specific features, en-
abling them to operate effectively across diverse cloud-edge
environments. Our approach employs state abstraction tech-
niques to create a unified, fixed-dimension, and infrastructure-
invariant representation of the state space. The discrete state
features are mapped into fixed-size embeddings that capture
underlying relationships in a dense, continuous space. Then,
the continuous and discrete features are passed through two
distinct two-layer MLP networks and then concatenated and
passed through an adaptive residual layer, which further
enhances generalization and adaptation during transfers.
This transformation abstracts infrastructure-specific details,
enabling effective knowledge transfer across different cloud-
edge environments without the need for agent redesign.
Our work is orthogonal to meta-learning and continual

learning approaches. Once the agent is made compatible
with multiple infrastructures, our framework can be com-
bined with meta-learning or continual learning techniques to
further enhance adaptability to changes in input workloads.
This integration would create DRL agents capable of gener-
alizing not only to changes in the underlying infrastructure
but also to variations in input distributions.

This work bridges the gap between DRL models and their
practical deployment in dynamic, heterogeneous cloud-edge
systems. Our contributions can be summarized as follows:
1)We formulate the job placement problem inmulti-datacenter
infrastructures as an RL task and propose a state-action space
and reward design for multi-datacenter cloud-edge resource
management, enabling seamless cross-domain transfer and
adaptation across environments with varying scales.
2) We integrate a custom feature extractor into the internal
architecture of the DRL agent, using state abstraction and

adaptation techniques to decouple the agent from infrastructure-
specific details. This approach enables rapid adaptation to
infrastructure changes.
3) We develop a framework for job-to-datacenter placement
and evaluate it through extensive simulations. We compare
it against a heuristic and a baseline DRL approach, demon-
strating significant improvements in terms of total reward
and convergence speed.

To the best of our knowledge, no prior work addresses the
challenge of state-action dimension mismatch in the cloud-
edge continuum environments for resource management
tasks. Existing methods are either highly theoretical and im-
practical for real-world deployment or tailored to specific
domains like robotics or games. This challenge is particularly
critical in cloud-edge environments, where infrastructure
changes are common. Our work fills this gap by proposing
a transfer learning framework that uses state abstraction to
create an infrastructure-invariant representation, enabling
seamless policy transfer across diverse environments. By de-
coupling the agent from domain-specific features, our frame-
work minimizes the need for extensive retraining, ensuring
robust performance across varying system configurations.

2 BACKGROUND
RL. The RL paradigm includes an agent and an environment.
The agent observes the state 𝑠 of the environment, interacts
with it by taking actions 𝑎 based on a learned behavior, for-
mally called a policy, and receives feedback in the form of a
reward signal 𝑟 . Each action affects the environment, causing
a transition to a new state. These interactions occur over dis-
crete time steps 𝑡 , which together form an episode. The goal
of the agent is to maximize its cumulative episodic reward by
discovering an optimal policy. RL has been widely applied in
robotics, game playing, and autonomous decision-making,
where sequential decision processes are crucial.

DRL. DRL extends standard RL by incorporating deep neu-
ral networks as function approximators to learn complex
policies, enabling agents to handle large, high-dimensional
state-action spaces found in modern systems. However, this
comes at a cost, as training deep networks requires substan-
tial computational resources, extensive environment inter-
action, and often suffers from instability during learning.
The challenge of sample inefficiency arises, where an agent
may require a large number of interactions to converge to
an effective policy. Additionally, a fundamental aspect of
RL is the exploration-exploitation tradeoff, where an agent
must balance between exploring new actions to discover
better strategies and exploiting known actions to maximize
rewards. Poor exploration can lead to suboptimal policies,
excessive training times, or convergence to local optima.

278



EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands T. Aslanidis et al.

Actor-Critic Algorithms. These algorithms consist of two
components: the actor, which determines the agent’s actions,
and the critic, which evaluates the quality of those actions
by providing feedback. This is achieved using two separate
neural networks—one for each component. The state serves
as input to both the actor and the critic. The policy network
(actor) maps states to a probability distribution over possi-
ble actions. It is responsible for decision-making, selecting
actions based on learned policies that maximize expected
rewards. The policy is continuously refined using feedback
from the critic, allowing the agent to explore and exploit
effectively. The value network (critic) estimates a scalar state
value, which represents the expected cumulative reward from
a given state. It evaluates the agent’s performance and com-
putes the advantage, defined as the difference between the
predicted state value and the actual received reward. This
advantage function helps guide policy updates, improving
decision-making over time. By training both networks simul-
taneously, actor-critic algorithms enable more stable learn-
ing, balancing long-term planning with immediate reward
feedback, making them effective for complex reinforcement
learning tasks.
Proximal Policy Optimization (PPO). PPO is a widely
used actor-critic algorithm that optimizes the policy using
a clipped surrogate objective, which prevents excessively
large updates that could destabilize training. By constrain-
ing policy updates, PPO ensures a more stable learning pro-
cess while effectively balancing exploration and exploitation.
These properties make PPO well-suited for complex DRL
tasks that require reliable performance and sample efficiency.
Transfer RL&Cross-Domain Transfer. Transfer RL lever-
ages pretrained agent knowledge from a source task to a
target task to reduce the required interactions, significantly
accelerating convergence and improving sample efficiency.
In cross-domain transfers, the source task that the agent
initially trained on and the target task that the agent is later
deployed on have different state-action spaces. The key chal-
lenge in cross-domain transfer is enabling the agent to effec-
tively reuse knowledge from tasks that do not share identical
state-action representations, moving beyond conventional
transfer learning that assumes a common structure. Various
approaches in the literature aim to bridge this gap, facilitat-
ing knowledge transfer across environments with different
state-action spaces.
State Abstraction and Dimensionality Reduction. In
reinforcement learning, the state space often contains high-
dimensional, redundant, or irrelevant information that can
hinder learning and generalization. State abstraction and di-
mensionality reduction techniques address this challenge by
transforming raw state features into a fixed, low-dimensional,
and unified representation that captures the essential aspects

of the environment. This abstraction process is critical for
enabling domain-invariant and environment-agnostic repre-
sentations, which allow agents to transfer knowledge across
environments with different state-action dimensionalities.
By decoupling the agent’s policy from environment-specific
details, state abstraction ensures that the agent can inter-
act with and adapt to new environments efficiently, even
when the underlying infrastructure or task configuration
changes. For example, in cloud-edge resource management,
where infrastructure configurations vary widely, a unified
representation of resource states (e.g., CPU usage, memory
availability) enables the agent to generalize across differ-
ent datacenters without requiring extensive retraining. This
approach not only improves sample efficiency but also en-
hances the agent’s ability to handle dynamic and heteroge-
neous environments, making it a cornerstone of effective
cross-domain transfer learning.

Embeddings in Policy Networks of DRL Agents. Em-
beddings (first introduced in [4], popularized in [24]) are
low-dimensional representations of high-dimensional data that
capture essential features while preserving meaningful rela-
tionships. They replace raw one-hot or categorical encodings
by mapping discrete variables into continuous vector spaces,
allowing models to generalize more effectively. In DRL, em-
beddings play a crucial role in policy networks by enabling
agents to efficiently process large and complex state-action
spaces. By learning compact, transferable representations,
embeddings facilitate cross-domain policy adaptation, ensur-
ing smoother transfer learning and better alignment of state-
action spaces in heterogeneous environments. This ability to
encode meaningful feature relationships is especially valu-
able in dynamic systems where traditional representations
struggle to adapt efficiently.

Residual Connections in PolicyNetworks ofDRLAgents.
Residual connections in neural networks, introduced in [12],
enable deeper architectures by allowing gradients to flow
more effectively through layers, mitigating vanishing gra-
dient issues. In DRL, residual connections in the policy net-
work facilitate smoother policy updates by preserving use-
ful representations while enabling adaptation to new tasks.
For transfer learning, residual connections help retain pre-
viously learned knowledge while integrating new informa-
tion, preventing catastrophic forgetting. When adapting to
new policies across different environments, residual layers
allow for incremental modifications to the policy, ensuring
stability while enabling flexibility in handling state-action
mismatches during cross-domain transfers.

279



Cross-Domain DRL Agents for Efficient Job Placement in the Cloud-Edge Continuum EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Dublin

Cloud

Edge

Far-Edge

Rotterdam

UCD DCU

Job Queue

Figure 1: A multi-datacenter infrastructure consisting of one
cloud, one edge, and two far-edge datacenters (Env B).

3 PROBLEM FORMULATION & SOLUTION
System Model. We consider a hierarchical infrastructure
composed of𝑛 datacenters, as illustrated in Figure 1. Datacen-
ters are classified into three types: cloud, edge, and far-edge.
For instance, far-edge (on-premise) datacenters may be lo-
cated at two different universities in Dublin (e.g., UCD and
DCU), an edge datacenter elsewhere in Dublin, and a cloud
datacenter in Rotterdam. Each datacenter consists of multiple
hosts. In our scenario, all datacenters are interconnected ex-
cept for the two far-edge datacenters, which remain isolated
from one another.

Cloud datacenters typically offer a larger number of hosts
with more powerful machines, whereas edge and far-edge
datacenters have fewer and less capable hosts but are acces-
sible with a lower latency since they are closer to the users.
Although each datacenter maintains its own job queue, we
preprocess these individual queues to create an aggregated
view that forms part of the RL agent’s state space.

In our model, jobs arrive exclusively at far-edge locations
and may be placed in the same far-edge datacenter, in an
edge datacenter connected to it, or, as a last resort, in a
cloud datacenter. Notably, jobs arriving at a particular far-
edge (e.g., UCD) cannot be deployed to another far-edge (e.g.,
DCU). Each job is characterized by its CPU core requirements,
execution length, arrival location (corresponding to one of
the datacenters), a soft deadline, and a latency tolerance
classified as tolerant, moderate, or critical.
The soft deadline defines a preferred timeframe for job

placement, whereas the latency tolerance determines how
far from its arrival location the job can be placed without sig-
nificant degradation (e.g., closer at the far-edge, at the edge,
or further away in the cloud). Consequently, job placement
directly impacts QoS, as jobs processed farther from their

Datacenter
Type

Job Latency
Tolerance QoS

Far-Edge Tolerant 1.0
Edge Tolerant 1.0
Cloud Tolerant 1.0

Far-Edge Moderate 1.0
Edge Moderate 1.0
Cloud Moderate 0.0

Far-edge Critical 1.0
Edge Critical 0.5
Cloud Critical 0.0

Table 1: Job QoS achieved based on datacenter type and job
latency tolerance.

arrival location experience higher communication delays
(e.g., longer round-trip times). To clarify how these parame-
ters impact service quality, Table 1 summarizes the expected
quality-of-service (QoS) for each combination of datacenter
type and job latency tolerance. The soft deadline represents
the maximum allowable waiting time before placement. If
the deadline is exceeded, the job is still executed, but this out-
come is considered suboptimal as it results in a degradation
of the job’s QoS.
In our RL setup, each episode is defined by a fixed work-

load size. Specifically, we introduce a predefined number of
jobs (e.g., 50) into the system. The episode terminates once
all these jobs have been successfully executed, after which
the simulation resets, and the experiment is repeated.
The primary objective of our DRL agent is to serve as a

broker that maps incoming jobs to suitable datacenters for
execution. The job-to-host assignment within a datacenter
is determined by a heuristic that allocates the job to the host
with the maximum available resources. Furthermore, jobs
are executed within virtual machines (VMs). We assume that
each host has an always-on VM that is available provided
sufficient resources exist. The agent has full visibility of
all datacenters and the current job queue. This visibility is
based on a lightweight state representation, where each host
is described by three numerical values and each job in the
queue by four numerical values (see Figure 2). The agent
does not have insight into future job arrivals.
The agent operates in a slotted manner (with one slot

corresponding to one second). It receives the current infras-
tructure and job queue states at each slot and returns an
action vector. When no jobs are pending, all actions default
to no-ops. Since the number of arriving jobs is variable, we
define a maximum queue length to accommodate fluctua-
tions in workload. We need to set a maximum job queue
length to define the agent’s action space, which corresponds

280



EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands T. Aslanidis et al.

Infrastructure
State

Job Queue
State

Job Queue Infrastructure

Cloud
Datacenters

Edge
Datacenters

Far-Edge
Datacenters

Action
DRL Agent

+

Translate
Action

Reward

Calculate
Reward

State

Environment

Place Waiting
Jobs

Job1

Job2

Jobn

...

Figure 2: The DRL agent takes the concatenated states as
input, selects an action, and receives a reward based on the
environment’s job placement response. This loop repeats
until the episode ends.

to placement decisions for each job. This fixed limit is essen-
tial for the DRL agent’s architecture, as it affects the output
layer size of the neural network. The queue does not need
to reach this maximum; if fewer jobs are present, slots are
filled with zeros.

State Space. The state space consists of two subspaces. The
first represents the infrastructure load, where each host
in a datacenter is described by the tuple ⟨𝐷𝐶𝑖𝑑 , 𝐷𝐶𝑡𝑦𝑝𝑒 ,
𝐻𝑜𝑠𝑡𝑓 𝑟𝑒𝑒𝐶𝑜𝑟𝑒𝑠⟩. Here, 𝐷𝐶𝑖𝑑 uniquely identifies a datacenter,
𝐷𝐶𝑡𝑦𝑝𝑒 indicates whether it is cloud, edge, or far-edge, and
HostfreeCores indicate the number of available cores at the this
slot. This subspace informs the agent about the currently
available computing resources. The second subspace cap-
tures the job queue, with each job represented by the tuple
⟨𝑐𝑜𝑟𝑒𝑠 , 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 , 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒⟩. The overall state at
each timestep is formed by concatenating the infrastructure
state with the job queue information, as depicted in Figure 2.

Action Space. The agent’s action is expressed as a vector
whose length equals the maximum number of jobs that can
be queued. Each element of this vector specifies the data-
center (via its id) to which the corresponding job should be
assigned. To handle DRL agent transfers across infrastruc-
tures with different numbers of datacenters, the action vector
is defined based on a user-specified maximum number of
datacenters. If an action is infeasible—such as assigning a
job to a datacenter with insufficient free resources or a non-
existent datacenter—the environment treats that action as a
no-op. Similarly, if the agent issues an action for a job that
is not present (due to variable queue lengths), it is ignored.

Reward Function. Our reward function integrates multiple
components to balance system performance metrics. First,

to encourage prompt job placement and prevent queue con-
gestion, we define a placement reward,

𝑅𝑝 =
jobsPlaced
jobsWaiting

.

Second, to account for QoS based on the datacenter type and
the job’s latency tolerance, we incorporate a QoS reward,

𝑅𝑞 =
QoS

jobsPlaced
,

with quality values as detailed in Table 1. Third, to penalize
deadline violations, we compute a deadline violation ratio,

𝑅𝑑 =
deadlineViolationsCount

jobsWaiting
.

The overall reward is given by

𝑅 = 𝑐𝑝𝑅𝑝 + 𝑐𝑞𝑅𝑞 − 𝑐𝑑𝑅𝑑 ,

where 𝑐𝑝 , 𝑐𝑞 , and 𝑐𝑑 are coefficients (with 0 ≤ 𝑐𝑝 , 𝑐𝑞, 𝑐𝑑 ≤ 1
and 𝑐𝑝 + 𝑐𝑞 + 𝑐𝑑 = 1) that adjust the relative importance of
each component.
Policy Network Architecture. With increasing system
complexity, designing DRL solutions often leads to incorpo-
rating ever more features into the state space in an effort to
capture every nuance of the infrastructure. However, this
expansion has two major drawbacks. First, it slows training
and convergence due to the curse of dimensionality phenom-
enon [3]. Second, it tightly couples the agent to a specific
infrastructure, forcing a complete redesign of the state space,
action space, and reward function when transitioning to
a new environment—even when the underlying tasks are
conceptually similar. Although feature importance analysis
helps identify which features contribute positively, these
methods remain time-consuming and do not fully decouple
the agent from environment-specific details. Moreover, new
infrastructures may introduce additional features, and those
previously considered important might change, further ex-
acerbating the state dimension mismatch issue inherent in
cross-domain transfers.

To address these challenges, we adopt amore efficient tech-
nique based on state abstraction. Our DRL agent incorporates
a custom feature extractor within its policy network that
transforms the raw state into a compressed, fixed-dimension
latent representation as shown in Figure 3. This unified latent
representation is infrastructure-agnostic, enabling the agent
not only to learn effectively in a single environment but also
to retain and transfer knowledge to similar environments.
The state abstraction process operates as follows. First,

all features in the raw observation are padded with zeros
up to their maximum user-defined values. Within the policy
network, continuous and categorical features are processed
separately. Categorical features, typically represented via
one-hot encoding, are passed through an embedding layer to

281



Cross-Domain DRL Agents for Efficient Job Placement in the Cloud-Edge Continuum EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

categorical
features

continuous
features

embedding

+

adaptation
(residual)

action distribution

fully
connected

action
selection

actor network critic
network

action vector

state value

advantage
calculation

reward

raw observation API

advantage

agent

feature padding

environment

feature separator

MLP MLP

fully
connected

ReLu

normalization

dropout

fully
connected

ReLu

Figure 3: DRL agent architecture for handling state-action
mismatches in transfers between different environments.

compactly capture their underlying relationships. Each fea-
ture, whether continuous or categorical, is then processed by
its own dedicated MLP with an identical architecture. These
MLPs use ReLU activation functions and dropout for regu-
larization. Their outputs are then concatenated and passed
through an adaptation layer—implemented as a residual con-
nection—before action selection. This layer allows the agent
to preserve previously learned knowledge while adapting to
new information, mitigating catastrophic forgetting. By con-
verting raw observations into a unified, domain-invariant
representation, the agent can transfer knowledge across di-
verse cloud-edge environments without requiring extensive
retraining. Finally, all neural network weights are initial-
ized using Xavier initialization [11], with biases set to zero,
ensuring efficient learning and stable convergence.

4 PERFORMANCE EVALUATION
Experimental Setup.We evaluate our approach using the
CloudSim Plus simulator [34], and a custom DRL environ-
ment built on the Gymnasium API [37]. To bridge the Java-
based CloudSim Plus with Python DRL agents, we used the

Py4J gateway [10], adding the functionality to dynamically
support job-to-datacenter placement decisions.
For the calculation of rewards, we assign equal weights

to placement, quality of service, and deadline compliance
metrics (coefficients 𝑐𝑝 = 𝑐𝑞 = 𝑐𝑑 = 0.33). The experiments
used the PPO algorithm from the stable-baselines3 (SB3)
library [27], with two variants: (i) the baseline PPO-Base
(vanilla SB3 implementation), and (ii) our extended PPO-X,
which integrates a custom feature extractor (see Figure 3)
to enhance adaptability to infrastructure changes. Training
was conducted on NVIDIA RTX 4080/4090 GPUs with Intel
i7-14700KF/i9-14900KF CPUs over 600k timesteps (about 5
to 7 hours per run), with a simulation timestep of 1 second.
Each experiment was repeated using five different random
seeds, with the final results averaged across these runs.

Test Scenarios. We compared our PPO-X algorithm against
two baselines, a heuristic and a vanilla DRL algorithm:
(1) Heuristic: Prioritizes jobs according to their deadline

and criticality, placing them in the closest available datacen-
ter. To enhance its effectiveness, we intentionally designed
it to allow multiple placement attempts per job, unlike DRL
agents, which make a single decision per step. This gives
the heuristic an advantage, as repeated placement attempts
increase the chances of finding available resources.
(2) PPO-Base: The vanilla PPO provided by the SB3 library.
Note that observations are always zero-padded before be-

ing passed to the agent, ensuring a consistent state dimension
and allowing even the vanilla PPO algorithm to handle them
without mismatches.

The algorithms were trained in the topology of Figure 1.
We created two additional environments for transfer learning
experiments. The environment𝐴 removes the cloud datacen-
ter from 𝐵 to test the adaptability of the agent to a reduced
infrastructure. The environment 𝐶 extends 𝐵 with two new
datacenters: an edge datacenter in Copenhagen and a far-
edge datacenter at the AAU CPH university, both connected
to the Rotterman cloud datacenter. The jobs in 𝐶 arrive at
three far-edge locations instead of two in 𝐵, and the job trace
is different, with unseen job descriptions. The datacenter
characteristics are as follows: 16 hosts with 64 CPU cores
each for the cloud datacenter; 8 hosts with 16 CPU cores
each for the edge datacenters; 2-3 hosts with 6 CPU cores
each for the far-edge datacenters. All cores have the same
processing speed. Synthetic datasets were generated with
job durations uniformly distributed between 3 − 5 seconds,
requested CPU cores ranging from 1 to 20, soft deadlines
between 0 − 5 seconds, and arrival rate of 1 − 4 jobs per
timestep, totaling 50 jobs per episode.

Observations. In Figure 4, we see that the converged re-
wards of both PPO variants (at 600k steps) exceed the heuris-
tic’s performance in all three environments. We also observe

282



EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands T. Aslanidis et al.

0 300k 600k4
6
8

10
12

Train Env B

0 300k 600k
−40
−30
−20
−10

0
10

Transfer Env B → Env A

0 300k 600k
13.5
14.0
14.5
15.0
15.5 Transfer Env B → C

Steps

Re
wa

rd

(a) (b) (c)

PPO-X PPO-Base Heuristic

Figure 4: Reward comparison of our method vs. baselines.

Jobs
Placed
Ratio

QoS
Latency

Ratio

Deadlines
Violated

Ratio

0.0
0.2
0.4
0.6
0.8
1.0

Train Env B

Jobs
Placed
Ratio

QoS
Latency

Ratio

Deadlines
Violated

Ratio

0.0
0.2
0.4
0.6
0.8
1.0

Transfer Env B → A

Jobs
Placed
Ratio

QoS
Latency

Ratio

Deadlines
Violated

Ratio

0.0
0.2
0.4
0.6
0.8
1.0

Transfer Env B → C

Performance Metrics

Pe
rfo

rm
an

ce
 R

at
io

(a) (b) (c)

PPO-X PPO-Base Heuristic

Figure 5: Performance metrics: our method vs. baselines.

that during training, our PPO extension consistently outper-
forms the standard PPO algorithm (Figure 4a). However, it is
important to note that our extension is not always necessary
and may converge more slowly than the simpler version of
PPO (Figure 4b). For example, in environments such as 𝐴,
where the state-action space is relatively small and the opti-
mal solution is easier to identify, our extension may not pro-
vide significant benefits. Due to the larger model size, adap-
tation can be slower as more parameters need to be updated.
In such cases, it is crucial to evaluate whether the added
complexity of our extension justifies its use over the sim-
pler PPO version. At the same time, in Figure 5, we see how
total rewards translate into practical system performance.
Specifically, the jobs placed and QoS latency ratios should
be maximized, while the deadlines violated ratio should be
minimized. We observe that the performance metrics in en-
vironment 𝐴 are actually worse compared to environment 𝐵,
which may seem counterintuitive given that environment
𝐴 is less complex and thus presumably easier to solve. The
reason for the bad performance is that while environment 𝐴
has a much smaller state-action space, making it computa-
tionally simpler to solve, it also has far fewer hosts available.
As a result, the workload pattern becomes highly stressful,
leading to worse job placement and deadline violation ratios
compared to the environment 𝐵, which is more resource rich.
The advantage of our extension is evident in Figure 4c,

where the environment presents greater challenges com-
pared to what the agent encountered during training. To
better understand the impact of workload variability, we
designed a test with a different workload trace, evaluating

how both PPO architectures respond to sudden and critical
changes. As shown in Figure 4c, our extension not only con-
verges to a superior overall solution, but also exhibits greater
stability, especially in the second half of the run, whereas the
PPO-base algorithm remains highly unstable, as indicated
by the shaded regions representing variability across differ-
ent seeds. This stability suggests that PPO-X is better suited
for environments where conditions fluctuate significantly,
making it a more robust choice.

5 CONCLUSIONS & FUTUREWORK
We present a novel approach to enhance the adaptability
and transferability of DRL agents in dynamic cloud-edge
environments. Our architecture minimizes infrastructure-
specific dependencies, enabling cross-domain transfers. By
learning infrastructure-agnostic state representations, DRL
agents can generalize effectively despite resource availabil-
ity or workload pattern changes. This reduces the need for
extensive retraining, simplifying real-world deployment.

Moving forward, we aim to evaluate our approach in real-
world cloud infrastructures, focusing on performance, cost
efficiency, and energy savings. A key goal is quantifying the
benefits of reusing agent knowledge across different infras-
tructures. We also plan to explore multi-agent and hierarchi-
cal RL, where specialized agents manage datacenter selection,
host allocation, VM scaling, and job migration, enabling scal-
able, decentralized decision-making. To enhance resilience,
we will investigate drift detection and adaptation by intro-
ducing host failures or workload surges and ensuring agents
can detect and quickly respond to drift. Additionally, online
learning and adaptive reward shaping will refine policies in
real time, improving stability and convergence. Another di-
rection is integrating uncertainty-aware RL and contrastive
learning to improve decision-making in unpredictable envi-
ronments. Continual and meta-learning could enhance long-
term adaptability while preventing catastrophic forgetting.
Finally, using graph neural networks in the policy network
could better capture relationships between cloud-edge re-
sources, improving robustness in large-scale deployments.

ACKNOWLEDGEMENTS
This work has been supported by (i) the Horizon Europe
research and innovation program of the European Union,
MLSysOps (grant agreement number 101092912), and (ii)
partly supported by the CLEVER project (grant agreement
number 101097560). CLEVER is supported by the EU Chips
Joint Undertaking (Chips JU) and its members (including
top-up funding by the Innovation Fund Denmark (IFD)).

283



Cross-Domain DRL Agents for Efficient Job Placement in the Cloud-Edge Continuum EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

REFERENCES
[1] Ala I. Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed

Aledhari, and Moussa Ayyash. 2015. Internet of Things: A Survey on
Enabling Technologies, Protocols, and Applications. IEEE Commun.
Surv. Tutorials 17, 4 (2015), 2347–2376. https://doi.org/10.1109/COMST.
2015.2444095

[2] Theodoros Aslanidis, Andreas Chouliaras, and Dimitris Chatzopoulos.
2023. Reinforcement Learning Techniques for Optimizing System
Configuration on the Cloud: A Taxonomy and Open Problems. In
Proceedings of the 2023 International Conference on embedded Wire-
less Systems and Networks, EWSN 2023, Rende, Italy, September 25-27,
2023, Giancarlo Fortino, Valeria Loscrì, Fabrizio Granelli, Tarek F. Ab-
delzaher, Antonella Guzzo, and Claudio Savaglio (Eds.). ACM, 345–350.
https://doi.org/10.5555/3639940.3639995

[3] Richard Bellman. 1957. Dynamic Programming. Dover Publications.
[4] Yoshua Bengio, RéjeanDucharme, Pascal Vincent, and Christian Janvin.

2003. A Neural Probabilistic Language Model. J. Mach. Learn. Res. 3
(2003), 1137–1155. https://jmlr.org/papers/v3/bengio03a.html

[5] Nicolò Botteghi, Mannes Poel, and Christoph Brune. 2022. Unsuper-
vised Representation Learning in Deep Reinforcement Learning: A
Review. https://doi.org/10.48550/ARXIV.2208.14226 arXiv:2208.14226

[6] Haitham Bou-Ammar, Eric Eaton, Paul Ruvolo, and Matthew E. Tay-
lor. 2015. Unsupervised Cross-Domain Transfer in Policy Gradient
Reinforcement Learning via Manifold Alignment. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA, Blai Bonet and Sven Koenig (Eds.). AAAI
Press, 2504–2510. https://doi.org/10.1609/AAAI.V29I1.9631

[7] Yu Chen, Yingfeng Chen, Yu Yang, Ying Li, Jianwei Yin, and Changjie
Fan. 2019. Learning Action-Transferable Policy with Action Embed-
ding. CoRR abs/1909.02291 (2019). arXiv:1909.02291 http://arxiv.org/
abs/1909.02291

[8] Mieszko Ferens, Diego Hortelano, Ignacio De Miguel, Ramón J Durán
Barroso, and Sokol Kosta. 2024. STEROCEN: Simulation and Training
Environment for Resource Orchestration in Cloud-Edge Networks. In
2024 15th International Conference on Network of the Future (NoF). IEEE,
133–141.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks. In Proceed-
ings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017 (Proceedings of Machine
Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.).
PMLR, 1126–1135. http://proceedings.mlr.press/v70/finn17a.html

[10] Włodzimierz Funika, Paweł Koperek, and Jacek Kitowski. 2018. Re-
peatable experiments in the cloud resources management domain with
use of reinforcement learning. In Cracow Grid Workshop. 31–32.

[11] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty
of training deep feedforward neural networks. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings, 249–256.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016. IEEE Computer Society, 770–778. https:
//doi.org/10.1109/CVPR.2016.90

[13] Irina Higgins, Arka Pal, Andrei A. Rusu, Loïc Matthey, Christopher P.
Burgess, Alexander Pritzel, Matthew M. Botvinick, Charles Blundell,
and Alexander Lerchner. 2017. DARLA: Improving Zero-Shot Transfer
in Reinforcement Learning. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017 (Proceedings of Machine Learning Research, Vol. 70),
Doina Precup and Yee Whye Teh (Eds.). PMLR, 1480–1490. http:

//proceedings.mlr.press/v70/higgins17a.html
[14] Menglan Hu, Hao Wang, Xiaohui Xu, Jianwen He, Yi Hu, Tianping

Deng, and Kai Peng. 2024. Joint Optimization of Microservice Deploy-
ment and Routing in Edge via Multi-Objective Deep Reinforcement
Learning. IEEE Trans. Netw. Serv. Manag. 21, 6 (2024), 6364–6381.
https://doi.org/10.1109/TNSM.2024.3443872

[15] Girish Joshi and Girish Chowdhary. 2018. Cross-Domain Transfer in
Reinforcement Learning Using Target Apprentice. In 2018 IEEE Inter-
national Conference on Robotics and Automation, ICRA 2018, Brisbane,
Australia, May 21-25, 2018. IEEE, 7525–7532. https://doi.org/10.1109/
ICRA.2018.8462977

[16] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup.
2022. Towards Continual Reinforcement Learning: A Review and
Perspectives. J. Artif. Intell. Res. 75 (2022), 1401–1476. https://doi.org/
10.1613/JAIR.1.13673

[17] Boonhatai Kruekaew andWarangkhana Kimpan. 2022. Multi-Objective
Task Scheduling Optimization for Load Balancing in Cloud Computing
Environment Using Hybrid Artificial Bee Colony Algorithm With
Reinforcement Learning. IEEE Access 10 (2022), 17803–17818. https:
//doi.org/10.1109/ACCESS.2022.3149955

[18] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu
Jia, Ales Leonardis, Gregory G. Slabaugh, and Tinne Tuytelaars. 2022.
A Continual Learning Survey: Defying Forgetting in Classification
Tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44, 7 (2022), 3366–3385.
https://doi.org/10.1109/TPAMI.2021.3057446

[19] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. 2020. CURL: Con-
trastive Unsupervised Representations for Reinforcement Learning.
In Proceedings of the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of Machine
Learning Research, Vol. 119). PMLR, 5639–5650. http://proceedings.
mlr.press/v119/laskin20a.html

[20] Jeng-Lin Li, Chih-Fan Hsu, Ming-Ching Chang, and Wei-Chao Chen.
2024. A Comprehensive Review of Machine Learning Advances on
Data Change: A Cross-Field Perspective. CoRR abs/2402.12627 (2024).
https://doi.org/10.48550/ARXIV.2402.12627 arXiv:2402.12627

[21] Ning Liu, Zhe Li, Jielong Xu, Zhiyuan Xu, Sheng Lin, Qinru Qiu, Jian
Tang, and Yanzhi Wang. 2017. A Hierarchical Framework of Cloud
Resource Allocation and Power Management Using Deep Reinforce-
ment Learning. In 37th IEEE International Conference on Distributed
Computing Systems, ICDCS 2017, Atlanta, GA, USA, June 5-8, 2017,
Kisung Lee and Ling Liu (Eds.). IEEE Computer Society, 372–382.
https://doi.org/10.1109/ICDCS.2017.123

[22] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan
Zhang. 2019. Learning under Concept Drift: A Review. IEEE Trans.
Knowl. Data Eng. 31, 12 (2019), 2346–2363. https://doi.org/10.1109/
TKDE.2018.2876857

[23] Jiafei Lyu, Chenjia Bai, Jingwen Yang, Zongqing Lu, and Xiu Li.
2024. Cross-Domain Policy Adaptation by Capturing Representation
Mismatch. In Forty-first International Conference on Machine Learn-
ing, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net.
https://openreview.net/forum?id=3uPSQmjXzd

[24] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Ef-
ficient Estimation of Word Representations in Vector Space. In 1st
International Conference on Learning Representations, ICLR 2013, Scotts-
dale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, Yoshua
Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1301.3781

[25] German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan,
and Stefan Wermter. 2019. Continual lifelong learning with neural
networks: A review. Neural Networks 113 (2019), 54–71. https://doi.
org/10.1016/J.NEUNET.2019.01.012

[26] HaoranQiu,WeichaoMao, ChenWang, Hubertus Franke, Alaa Youssef,
Zbigniew T. Kalbarczyk, Tamer Basar, and Ravishankar K. Iyer. 2023.

284

https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.5555/3639940.3639995
https://jmlr.org/papers/v3/bengio03a.html
https://doi.org/10.48550/ARXIV.2208.14226
https://arxiv.org/abs/2208.14226
https://doi.org/10.1609/AAAI.V29I1.9631
https://arxiv.org/abs/1909.02291
http://arxiv.org/abs/1909.02291
http://arxiv.org/abs/1909.02291
http://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://proceedings.mlr.press/v70/higgins17a.html
http://proceedings.mlr.press/v70/higgins17a.html
https://doi.org/10.1109/TNSM.2024.3443872
https://doi.org/10.1109/ICRA.2018.8462977
https://doi.org/10.1109/ICRA.2018.8462977
https://doi.org/10.1613/JAIR.1.13673
https://doi.org/10.1613/JAIR.1.13673
https://doi.org/10.1109/ACCESS.2022.3149955
https://doi.org/10.1109/ACCESS.2022.3149955
https://doi.org/10.1109/TPAMI.2021.3057446
http://proceedings.mlr.press/v119/laskin20a.html
http://proceedings.mlr.press/v119/laskin20a.html
https://doi.org/10.48550/ARXIV.2402.12627
https://arxiv.org/abs/2402.12627
https://doi.org/10.1109/ICDCS.2017.123
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/TKDE.2018.2876857
https://openreview.net/forum?id=3uPSQmjXzd
http://arxiv.org/abs/1301.3781
https://doi.org/10.1016/J.NEUNET.2019.01.012
https://doi.org/10.1016/J.NEUNET.2019.01.012


EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands T. Aslanidis et al.

AWARE: Automate Workload Autoscaling with Reinforcement Learn-
ing in Production Cloud Systems. In Proceedings of the 2023 USENIX
Annual Technical Conference, USENIX ATC 2023, Boston, MA, USA, July
10-12, 2023, Julia Lawall and Dan Williams (Eds.). USENIX Association,
387–402. https://www.usenix.org/conference/atc23/presentation/qiu-
haoran

[27] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximil-
ian Ernestus, and Noah Dormann. 2021. Stable-Baselines3: Reliable
Reinforcement Learning Implementations. Journal ofMachine Learning
Research 22, 268 (2021), 1–8. http://jmlr.org/papers/v22/20-1364.html

[28] Yongyi Ran, Han Hu, Xin Zhou, and Yonggang Wen. 2019. DeepEE:
Joint Optimization of Job Scheduling and Cooling Control for Data
Center Energy Efficiency Using Deep Reinforcement Learning. In
39th IEEE International Conference on Distributed Computing Systems,
ICDCS 2019, Dallas, TX, USA, July 7-10, 2019. IEEE, 645–655. https:
//doi.org/10.1109/ICDCS.2019.00070

[29] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. 2009. A Taxonomy
and Survey of Cloud Computing Systems. In International Conference
on Networked Computing and Advanced InformationManagement, NCM
2009, Fifth International Joint Conference on INC, IMS and IDC: INC 2009:
International Conference on Networked Computing, IMS 2009: Interna-
tional Conference on Advanced Information Management and Service,
IDC 2009: International Conference on Digital Content, Multimedia Tech-
nology and its Applications, Seoul, Korea, August 25-27, 2009, Jinhwa
Kim, Dursun Delen, Jinsoo Park, Franz Ko, Chen Rui, Jong Hyung
Lee, Jian Wang, and Gang Kou (Eds.). IEEE Computer Society, 44–51.
https://doi.org/10.1109/NCM.2009.218

[30] Daniel Rosendo, Alexandru Costan, Patrick Valduriez, and Gabriel
Antoniu. 2022. Distributed intelligence on the Edge-to-Cloud Contin-
uum: A systematic literature review. J. Parallel Distributed Comput.
166 (2022), 71–94. https://doi.org/10.1016/J.JPDC.2022.04.004

[31] Mahadev Satyanarayanan. 2017. The Emergence of Edge Computing.
Computer 50, 1 (2017), 30–39. https://doi.org/10.1109/MC.2017.9

[32] Sergio A. Serrano, José Martínez-Carranza, and Luis Enrique Sucar.
2023. Similarity-based Knowledge Transfer for Cross-Domain Rein-
forcement Learning. CoRR abs/2312.03764 (2023). https://doi.org/10.
48550/ARXIV.2312.03764 arXiv:2312.03764

[33] Kefan Shuai, YimingMiao, Kai Hwang, and Zhengdao Li. 2023. Transfer
Reinforcement Learning for Adaptive TaskOffloadingOver Distributed
Edge Clouds. IEEE Trans. Cloud Comput. 11, 2 (2023), 2175–2187.
https://doi.org/10.1109/TCC.2022.3192560

[34] Manoel C Silva Filho, Raysa L Oliveira, Claudio C Monteiro, Pedro RM
Inácio, and Mário M Freire. 2017. CloudSim plus: a cloud computing
simulation framework pursuing software engineering principles for
improved modularity, extensibility and correctness. In 2017 IFIP/IEEE
symposium on integrated network and service management (IM). IEEE,
400–406.

[35] Yuechuan Tao, Jing Qiu, and Shuying Lai. 2022. A Hybrid Cloud and
Edge Control Strategy for Demand Responses Using Deep Reinforce-
ment Learning and Transfer Learning. IEEE Trans. Cloud Comput. 10,
1 (2022), 56–71. https://doi.org/10.1109/TCC.2021.3117580

[36] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A
physics engine for model-based control. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IROS 2012, Vilam-
oura, Algarve, Portugal, October 7-12, 2012. IEEE, 5026–5033. https:
//doi.org/10.1109/IROS.2012.6386109

[37] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gian-
luca De Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris,
Markus Krimmel, Arjun KG, et al. 2024. Gymnasium: A Standard
Interface for Reinforcement Learning Environments. arXiv preprint
arXiv:2407.17032 (2024).

[38] Michael Wan, Tanmay Gangwani, and Jian Peng. 2020. Mutual Infor-
mation Based Knowledge Transfer Under State-Action Dimension
Mismatch. In Proceedings of the Thirty-Sixth Conference on Uncer-
tainty in Artificial Intelligence, UAI 2020, virtual online, August 3-6,
2020 (Proceedings of Machine Learning Research, Vol. 124), Ryan P.
Adams and Vibhav Gogate (Eds.). AUAI Press, 1218–1227. http:
//proceedings.mlr.press/v124/wan20a.html

[39] Xin Wang, Hong Chen, Yuwei Zhou, Jianxin Ma, and Wenwu Zhu.
2023. Disentangled Representation Learning for Recommendation.
IEEE Trans. Pattern Anal. Mach. Intell. 45, 1 (2023), 408–424. https:
//doi.org/10.1109/TPAMI.2022.3153112

[40] Xiaoyu Wen, Chenjia Bai, Kang Xu, Xudong Yu, Yang Zhang, Xuelong
Li, and Zhen Wang. 2024. Contrastive Representation for Data Filter-
ing in Cross-Domain Offline Reinforcement Learning. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Aus-
tria, July 21-27, 2024. OpenReview.net. https://openreview.net/forum?
id=rReWhol66R

[41] Jinwei Xing, Takashi Nagata, Kexin Chen, Xinyun Zou, Emre Neftci,
and Jeffrey L. Krichmar. 2021. Domain Adaptation In Reinforcement
Learning Via Latent Unified State Representation. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Confer-
ence on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 10452–10459.
https://doi.org/10.1609/AAAI.V35I12.17251

[42] Tianpei Yang, Heng You, Jianye Hao, Yan Zheng, and Matthew E.
Taylor. 2024. A Transfer Approach Using Graph Neural Networks in
Deep Reinforcement Learning. In Thirty-Eighth AAAI Conference on
Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2014, February
20-27, 2024, Vancouver, Canada, Michael J. Wooldridge, Jennifer G.
Dy, and Sriraam Natarajan (Eds.). AAAI Press, 16352–16360. https:
//doi.org/10.1609/AAAI.V38I15.29571

[43] Zhe Yang, Phuong Nguyen, Haiming Jin, and Klara Nahrstedt. 2019.
MIRAS: Model-based Reinforcement Learning for Microservice Re-
source Allocation over Scientific Workflows. In 39th IEEE International
Conference on Distributed Computing Systems, ICDCS 2019, Dallas, TX,
USA, July 7-10, 2019. IEEE, 122–132. https://doi.org/10.1109/ICDCS.
2019.00021

[44] Heng You, Tianpei Yang, Yan Zheng, Jianye Hao, and Matthew E.
Taylor. 2022. Cross-domain adaptive transfer reinforcement learn-
ing based on state-action correspondence. In Uncertainty in Artifi-
cial Intelligence, Proceedings of the Thirty-Eighth Conference on Un-
certainty in Artificial Intelligence, UAI 2022, 1-5 August 2022, Eind-
hoven, The Netherlands (Proceedings of Machine Learning Research,
Vol. 180), James Cussens and Kun Zhang (Eds.). PMLR, 2299–2309.
https://proceedings.mlr.press/v180/you22a.html

[45] Jing Zeng, Ding Ding, Kaixuan Kang, Huamao Xie, and Qian Yin.
2022. Adaptive DRL-Based Virtual Machine Consolidation in Energy-
Efficient Cloud Data Center. IEEE Trans. Parallel Distributed Syst. 33,
11 (2022), 2991–3002. https://doi.org/10.1109/TPDS.2022.3147851

[46] Tianyu Zeng, Xiaoxi Zhang, Jingpu Duan, Chao Yu, ChuanWu, and Xu
Chen. 2024. An Offline-Transfer-Online Framework for Cloud-Edge
Collaborative Distributed Reinforcement Learning. IEEE Trans. Parallel
Distributed Syst. 35, 5 (2024), 720–731. https://doi.org/10.1109/TPDS.
2024.3360438

[47] Yutong Zhang, Boya Di, Zijie Zheng, Jinlong Lin, and Lingyang Song.
2021. Distributed Multi-Cloud Multi-Access Edge Computing by Multi-
Agent Reinforcement Learning. IEEE Trans. Wirel. Commun. 20, 4
(2021), 2565–2578. https://doi.org/10.1109/TWC.2020.3043038

285

https://www.usenix.org/conference/atc23/presentation/qiu-haoran
https://www.usenix.org/conference/atc23/presentation/qiu-haoran
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1109/ICDCS.2019.00070
https://doi.org/10.1109/ICDCS.2019.00070
https://doi.org/10.1109/NCM.2009.218
https://doi.org/10.1016/J.JPDC.2022.04.004
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.48550/ARXIV.2312.03764
https://doi.org/10.48550/ARXIV.2312.03764
https://arxiv.org/abs/2312.03764
https://doi.org/10.1109/TCC.2022.3192560
https://doi.org/10.1109/TCC.2021.3117580
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
http://proceedings.mlr.press/v124/wan20a.html
http://proceedings.mlr.press/v124/wan20a.html
https://doi.org/10.1109/TPAMI.2022.3153112
https://doi.org/10.1109/TPAMI.2022.3153112
https://openreview.net/forum?id=rReWhol66R
https://openreview.net/forum?id=rReWhol66R
https://doi.org/10.1609/AAAI.V35I12.17251
https://doi.org/10.1609/AAAI.V38I15.29571
https://doi.org/10.1609/AAAI.V38I15.29571
https://doi.org/10.1109/ICDCS.2019.00021
https://doi.org/10.1109/ICDCS.2019.00021
https://proceedings.mlr.press/v180/you22a.html
https://doi.org/10.1109/TPDS.2022.3147851
https://doi.org/10.1109/TPDS.2024.3360438
https://doi.org/10.1109/TPDS.2024.3360438
https://doi.org/10.1109/TWC.2020.3043038

	Abstract
	1 Introduction
	2 Background
	3 Problem Formulation & Solution 
	4 Performance Evaluation
	5 Conclusions & Future Work
	References

