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Abstract
Blockchain technology has revolutionized the way informa-
tion is propagated in decentralized networks. Ethereum, as a
major blockchain platform, plays a pivotal role in facilitating
smart contracts and decentralized applications. Modeling
information propagation dynamics in Ethereum is crucial
for ensuring network efficiency, security, and scalability. In
this study, we introduce three innovative theorems, aiming
to use Graph Attention Network (GAT) to analyze the infor-
mation propagation patterns; while our major contribution
is to develop a combined GAT and Reinforcement Learning
(RL) method to enhance the network efficiency and scala-
bility by optimizing the gas limits for block processing. It
learns the best actions to take in various network states, ul-
timately leading to improved Ethereum network efficiency
and throughput and optimize gas limits for block processing.
Additionally, we explore methods for effectively aggregating
transaction data by capturing graph structures and updat-
ing node embeddings for transaction pattern prediction. To
evaluate scalability, we implement and compare three Graph
Neural Network (GNN) models—GraphConv, GraphSAGE,
and GAT—comparing their performance at scale.
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1 Introduction
The advent of blockchain technology has revolutionized the
world of cryptocurrencies, with Ethereum being one of the
most prominent platforms. Ethereum’s decentralized nature
and smart contract functionality have resulted in a massive
amount of transactional data generated daily. As a result,
efficient pattern recognition methods are essential for ex-
tracting meaningful insights and addressing security issues
within the network.

A graph convolution algorithm based on deep learning
techniques has been proposed to automatically generate fea-
tures using a graph algorithm. Kipf and Welling (2017) and
Li et al. (2018) used Graph Convolutional Network (GCN)
model and its derivatives that apply semi-supervised classi-
fication using neural network models to graph data. Chen et
al. (2020) suggested a GCN-based phishing detection model
which samples subgraphs by random walk and applies node
embeddings and a model to incorporate spatial structures
and node features. Lin et al. (2020) investigated modeling
the Ethereum transaction network as a weighted temporal
graph and a temporal weighted multigraph embedding to
incorporate temporal and weighted transaction edges. More-
over, there are some studies on modeling smart contract
interactions as graph structures (Chen et al. 2020, Torres and
Camino 2021), but it is challenging to accurately attribute
the performance load of specific smart contract operations
to the edges and nodes of the graph (Zhuang et al., 2020).

While prior studies have explored various aspects of block-
chain analytics, few have addressed the challenges of optimiz-
ing network efficiency, particularly in the context of gas cost
management, and determining optimal gas limits remains an
open problem, as it requires dynamically adapting to network
conditions while ensuring fairness and security. To tackle
this, we introduce a novel Graph Attention Network and
Reinforcement Learning (GAT-RL) framework that leverages
graph-based learning to model transaction dependencies and
reinforcement learning to optimize gas allocation strategies.
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Our approach primarily leverages graph convolutional layers
to facilitate information propagation while effectively aggre-
gating data from neighboring nodes and dynamically updat-
ing graph structures. In the next section, we first outline our
model design, explain theorems on gas limit optimization
and maximizing network throughput, then introduce a novel
integration of GAT and RL for network optimization. We ap-
ply our method to Ethereum by extracting network data for
a specific block range, developing an algorithm for gas limit
optimization, and demonstrating how GAT-RL outperforms
RL-only approaches at scale.

2 Model Design
To enable information propagation across multiple layers,
the graph convolution operation is performed iteratively
through multiple graph convolutional layers. The output
of one layer serves as the input to the next layer, allowing
the propagation of information through the network. The
node representations are updated layer by layer, allowing
information from neighbors and their neighbors to be in-
corporated into the node features. This process facilitates
the learning of meaningful representations that capture the
dependencies and patterns in the blockchain network. We
aim to use this for enhancing the network efficiency and
scalability by optimizing the gas limits for block processing.

2.1 Optimizing Gas Limits for Block Processing
Optimizing gas limits in a blockchain network is a challeng-
ing problem. Traditional methods often rely on heuristics or
fixed rules, which may not adapt well to changing network
conditions. This can result in suboptimal throughput and
resource allocation. Reinforcement Learning (RL) provides
a framework for agents to learn and adapt their decision-
making based on interactions with an environment. In the
context of Ethereum, an RL agent can learn to adjust gas
limits dynamically to maximize throughput while minimiz-
ing processing time and congestion. We aim to use RL in the
Ethereum network to optimize gas costs in general, where
in Theorem 1, we attempt to prove it mathematically.

Theorem 1: In an Ethereum network where each transac-
tion takes a fixed time to process, the optimal gas limit that
maximizes throughput is when 𝐺

𝑇
> 𝑁 , where N is the total

number of transactions in the block, G is the gas limit, and
T is the time taken to process a single transaction.

Proof: To prove the theorem, let’s consider a simplified
Ethereum network with a fixed set of transactions and a
single miner. The objective is to find the optimal gas limit
that maximizes throughput, assuming each transaction takes
a fixed time to process and gas usage is linearly related to
time. Let N be the total number of transactions in the block,
G be the gas limit (maximum amount of gas that can be used
in the block), and T be the time taken to process a single
transaction (assumed fixed).

The total time taken to process all transactions in the
block can be represented as: Total processing time = 𝑁 ×𝑇 .
To maximize throughput, we need to maximize the number
of transactions processed in the block while respecting the
gas limit. If the total gas used exceeds the gas limit, then the
block will be full, and the number of transactions processed
will be limited by the gas limit:

Transactions processed = min(𝑁, 𝐺
𝑇
) (1)

To maximize throughput, we need to find the gas limit 𝐺
that maximizes the number of transactions processed:

maximize Transactions processed = min(𝑁, 𝐺
𝑇
)

subject to 𝐺 ≥ 0
(2)

Since the number of transactions processed is a linear
function of 𝐺 , we can differentiate it with respect to 𝐺 and
set the derivative to zero to find the maximum:

𝑑

𝑑𝐺

[
min(𝑁, 𝐺

𝑇
)
]
= 0 (3)

To handle the "min" operation, we consider two cases:
Case 1:When 𝐺

𝑇
> 𝑁 , the maximum number of transactions

processed will be 𝑁 .

𝑑

𝑑𝐺
[𝑁 ] = 0 (4)

Case 2:When 𝐺
𝑇
≤ 𝑁 , the maximum number of transactions

processed will be 𝐺
𝑇
.

𝑑

𝑑𝐺

[
𝐺

𝑇

]
= 0 (5)

Solving for 𝐺 in Case 2: 1/𝑇 = 0
Since in Case 2, when 𝐺

𝑇
≤ 𝑁 , we cannot find a valid

solution for 𝐺 that maximizes the number of transactions
processed. Therefore, the maximum throughput is achieved
when 𝐺

𝑇
> 𝑁 . In conclusion, in a Ethereum network where

each transaction takes a fixed time to process and gas usage
is linearly related to time, the optimal gas limit that maxi-
mizes throughput is when 𝐺

𝑇
> 𝑁 . This means that the gas

limit should be set high enough to allow the processing of
all transactions in the block without reaching the gas limit
constraint.
Theorem 2: In the Ethereum network, prove how the

objective function

𝐹 =
∑︁

(𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 · 𝐺𝑎𝑠𝐶𝑜𝑠𝑡

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦
) (6)

maximizes the network throughput, where: Transaction Pri-
ority represents the urgency or importance of a transaction.
Transaction Complexity is a measure of the computational
complexity of a transaction.
Proof: The optimization objective is to determine the

gas limit for each block to maximize network throughput,
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defined as the total number of successfully processed trans-
actions within a given time frame, while minimizing block
processing time and congestion. We initially make some
definitions:

1. Gas Usage Model: Gas usage is not strictly linear
with time. It depends on the complexity of the smart
contracts involved in each transaction. The total gas
used in the block cannot exceed the gas limit (𝐺).∑︁

(Gas Cost) ≤ 𝐺 (7)

2. Block Size Limit: There is a maximum block size limit
in terms of gas. Blocks cannot exceed this gas limit,
and transactions must be prioritized accordingly. The
total computational time for transactions in the block
must not exceed the block processing time (𝑇block).∑︁
(Transaction Complexity · Processing Time) ≤ 𝑇𝑏𝑙𝑜𝑐𝑘 (8)

For the mathematical representation of how Reinforce-
ment Learning (RL) can maximize throughput in gas opti-
mization, let’s define some key elements: States (S): The
state space represents network conditions, and can be repre-
sented as a vector of state variables, 𝑆 = [𝑆1, 𝑆2, ..., 𝑆𝑛], where
𝑛 is the number of state variables. Actions (A): The action
space represents different gas price choices for a transaction.
Actions can be represented as a vector of possible gas price
levels, 𝐴 = [𝐴1, 𝐴2, ..., 𝐴𝑚], where 𝑚 is the number of gas
price levels. Rewards (R): The reward function represents
the efficiency of a gas pricing decision. In this context, re-
wards could be based on transaction confirmation time, fee
income, or other relevant metrics. We define the reward func-
tion as𝑅(𝑠, 𝑎), where 𝑠 is the current state, and𝑎 is the chosen
action. Policy (𝜋): The policy is a mapping from states to
actions, 𝜋 : 𝑆 → 𝐴, that defines which gas price to choose
in each network state. The goal is to find an optimal policy
𝜋∗. Value Function (V): The value function represents the
expected cumulative reward when following a policy 𝜋 from
a given state. It can be defined as 𝑉 (𝑠) = ∑(𝛾𝑡 × 𝑅(𝑠𝑡 , 𝑎𝑡 ))
where 𝑡 is the time steps, 𝛾 is the discount factor, 𝑠𝑡 is the
state at time step 𝑡 , and 𝑎𝑡 is the action (gas price) chosen at
time step 𝑡 .
The objective is to find the policy 𝜋∗ that maximizes the

expected cumulative reward over time while accounting for
the discount factor𝛾 . Mathematically, this can be represented
as:

𝜋∗ = argmax
[∑︁

(𝛾𝑡 × 𝑅(𝑠𝑡 , 𝑎𝑡 ))
]

(9)

Now, let’s express the throughput:

Throughput =
Transactions processed
Block processing time

(10)

The RL training process involves adjusting the policy
based on past experiences to maximize the expected cumula-
tive reward. Over time, the agent refines its policy, converg-
ing toward an optimal policy 𝜋∗ that maximizes throughput
in Eq. (10) in the Ethereum network. To align this with the

reward function, we can consider a case where the reward is
solely based on Gas Cost:

𝑅(𝑠, 𝑎) = Gas Cost
Transaction Complexity

(11)

Now the optimal policy that maximizes the expected cu-
mulative reward becomes:

𝜋∗ = argmax
[∑︁

𝛾𝑡 × Gas Cost
Transaction Complexity

]
𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑡𝑜

∑︁
(Gas Cost) ≤ 𝐺

(12)

The RL agent aims to optimize its policy to maximize
the sum of rewards. Since the reward function involves the
ratio of Gas Cost to Transaction Complexity, and (𝛾𝑡 ) can
be approximated for Transaction Priority, the agent needs
to optimize the objective function given in the theorem to
reach the efficient processing of transactions.

2.2 GAT and RL to Optimize Network Efficiency
In blockchain networks, the efficient allocation of resources
is crucial for scalability and user experience. By combining
GCN/GAT and RL, where GCN/GAT can capture complex re-
lationships between blocks and transactions, while RL agents
can learn optimal strategies for gas limit adjustments, we
offer a solution that can adapt to changing network condi-
tions and improve overall efficiency. Blockchain data can
be represented as a graph, with blocks and transactions as
nodes and edges. This graph structure provides a suitable
basis for applying graph-based techniques to analyze and
model network dynamics.

Theorem3:CombiningGATwith RL inmodeling Ethereum
network efficiency out-performs RL alone.
Let 𝐺 = (𝑉 , 𝐸) represent the Ethereum network graph,

where 𝑉 is the set of nodes (miners/validators) and 𝐸 the set
of edges (communication links). Let 𝑆𝑡 ∈ R |𝑉 |×𝑑 denote the
global state at time 𝑡 , where 𝑆𝑡,𝑣 is the local state vector of
node 𝑣 . Consider a reinforcement learning agent that selects
actions to maximize a cumulative reward 𝑅 =

∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡 ,
where 𝑟𝑡 is the reward at time 𝑡 .

Compare two agents:
- A vanilla RL agent with policy 𝜋𝑡 = 𝜋 (𝑆𝑡 ;𝜃 ) directly based
on the raw state.
- A GAT-enhanced RL agent with policy 𝜋𝑡 = 𝜋 (𝑆𝑡 ;𝜃 ), where
𝑆𝑡 is the graph-processed state produced by a graph attention
network (GAT).

The GAT-enhanced agent achieves at least the same, and
typically a strictly higher, expected cumulative reward:

𝐽 (𝜋gat) ≥ 𝐽 (𝜋rl) (13)

where:

𝐽 (𝜋) = E

[
𝑇∑︁
𝑡=0

𝛾𝑡𝑟𝑡 | 𝜋
]

(14)

with strict inequality for sufficiently large graphs with non-
trivial communication patterns.
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Proof:
The processed state for the vanilla RL agent at time 𝑡 is:

𝑆processed (𝑡) = 𝑆𝑡𝑊𝑠 (15)

where𝑊𝑠 is a learnable transformation matrix.
The policy and value function are computed as:

𝜋𝑡 = softmax(𝑆processed (𝑡)𝑊𝜋 ), 𝑉𝑡 = 𝑆processed (𝑡)𝑊𝑣 (16)

The reward 𝑟𝑡 depends on 𝑆processed (𝑡) and the chosen action.
—
For the GAT-enhanced agent, the processed state incorpo-

rates graph attention:

𝑆𝑡 = GAT(𝐺, 𝑆𝑡 ;𝑊𝑠 ) (17)

This reflects local structural dependencies through attention-
weighted aggregation:

𝑆𝑣 =
∑︁

𝑢∈N(𝑣)
𝛼𝑣𝑢 (𝑆𝑢𝑊𝑠 ) (18)

where 𝛼𝑣𝑢 is the learned attention weight for edge (𝑣,𝑢).
The policy and value function become:

𝜋𝑡 = softmax(𝑆𝑡𝑊𝜋 ), 𝑉𝑡 = 𝑆𝑡𝑊𝑣 (19)

The reward function depends on 𝑆𝑡 instead of 𝑆𝑡 .
—
Inductive Argument. At 𝑡 = 0, both agents start from

the same initial state 𝑆0, but the GAT agent has richer state
processing:

𝑆0 = GAT(𝐺, 𝑆0;𝑊𝑠 ) (20)
The GAT term incorporates structural information from the
graph, which the vanilla agent ignores. This yields a better-
informed policy:

𝜋gat,0 = 𝜋 (𝑆0;𝜃 ) (21)
leading to:

E[𝑟0 | 𝜋gat] ≥ E[𝑟0 | 𝜋rl] (22)
Inductive Step. Assume for all 𝑡 ≤ 𝑘 :

E[𝑟𝑡 | 𝜋gat] ≥ E[𝑟𝑡 | 𝜋rl] (23)

Then, at step 𝑘 + 1, the state transitions to 𝑆𝑘+1 based on the
previous state and action. The GAT agent processes this into:

𝑆𝑘+1 = GAT(𝐺, 𝑆𝑘+1;𝑊𝑠 ) (24)

and the vanilla agent uses:

𝑆processed (𝑘 + 1) = 𝑆𝑘+1𝑊𝑠 (25)

Because 𝑆𝑘+1 retainsmore structural information than 𝑆processed (𝑘+
1), the GAT policy has access to richer features, leading to:

E[𝑟𝑘+1 | 𝜋gat] ≥ E[𝑟𝑘+1 | 𝜋rl] (26)

This completes the induction, showing:

𝐽 (𝜋gat) ≥ 𝐽 (𝜋rl) (27)

While Theorem 3 claims that GAT-enhanced reinforce-
ment learning (GAT-RL) is more effective than vanilla RL,
this claim relies on some implicit assumptions that yields a

better-informed policy. In the next section, we provide em-
pirical evidence comparing the performance of GAT-RL and
vanilla RL on a well-defined Ethereum network benchmark.

3 Empirical Analysis
3.1 Dataset Collection
This section discusses the publicly available Ethereumdatasets
and how we obtain them. Creating a complete transaction
graph for all Ethereum blocks would be a computationally
intensive task, as it would involve processing and storing a
large amount of data. Additionally, the Ethereum blockchain
is constantly growing, so the graph would continuously ex-
pand as new blocks are added. However, we provide an algo-
rithm to generate a transaction history graph for a range of
blocks to create a graph of transactions between Ethereum
addresses within a specified block range.

1. Place the URL of the Ethereum node obtained from In-
fura/Alchemy website in order to access the Ethereum
Mainnet.

2. Set the start_block and end_block variables to spec-
ify the block range to create the transaction history
graph; one can create a descending range (latest_block,
0, -1).

3. Create history of the transactions adding graph nodes
and edges.

We ran the models on a MacBook Pro equipped with an
Intel Core i9 processor, featuring 8 cores, speed of up to 4.8
GHz, and 30 GB of RAM.

3.2 Optimal Gas Limit Design
Using RL without GAT, Algorithm 1 (The code is given in
the supplementary material) presents a model designed to
determine the optimal gas limit, based on the network con-
gestion, and transactions processed according to theorem
1.

The plotted results in Figure 1 show the learning progress
of the RL agent as it attempts to optimize gas limits for
block processing in the Ethereum network. The x-axis repre-
sents the blocks, while the y-axis represents the throughput
(number of transactions processed) for each block. Here, we
explain the results:

1. Line Plots: The line plot represents the throughput
achieved by the RL agent in different episodes and
block numbers. The agent starts with random gas lim-
its and gradually learns to adjust the gas limits to maxi-
mize throughput, which proves our algorithm efficacy.

2. Learning Progress: As the block number increases,
the graph shows how the agent’s throughput improves
over time. Initially, the agent explores various gas limit
choices, leading to fluctuations in throughput, then
the throughput values stabilize and tend to increase.

3. Convergence: The convergence of the RL agent can
be observed when the lines start to converge to a more
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Algorithm 1: Optimal gas limit design
1. Initialization
2. Iterative Process:
Simulate Block Processing:

Calculate the expected block processing time
(𝐸 (𝑇block)) based on the average transaction processing
time (𝑇transaction) and the number of transactions included
in the block (𝑁transactions):

𝐸 (𝑇block) = 𝑁transactions ·𝑇transaction
Determine the congestion level (congestion_level)

based on the gas limit (gas_limit) and the number of
transactions with higher gas fees:

congestion_level =
𝑁high_gas_fee_transactions

gas_limit
Check Convergence:

If 𝐸 (𝑇block) is close to target time and conges-
tion_level is below congestion threshold, the algorithm
terminates.
Adjust Gas Limit:

If 𝐸 (𝑇block) is too high or congestion_level
is too high, reduce gas_limit by gas_limit_increment:
gas_limit = gas_limit − gas_limit_increment

If 𝐸 (𝑇block) is too low or congestion_level is
too low, increase gas_limit by gas_limit_increment:
gas_limit = gas_limit + gas_limit_increment
3. Algorithm Convergence:
The algorithm repeats the iterative process until it con-
verges or reaches a predefined maximum number of
iterations.

stable throughput pattern. This indicates that the agent
has learned optimal gas limits for maximizing through-
put.

4. Exploration-ExploitationTrade-off:The linesmight
show some exploration and exploitation behavior. Ini-
tially, the agent explores different gas limit options to
learn about their effects on throughput. As the agent
gains knowledge, it starts exploiting its learned Q-
values to choose better actions and converges to a
higher throughput. The randomness in the lines is
due to the inherent stochasticity in the simulation of
the environment and RL updates. The final through-
put achieved after the RL agent’s convergence is the
most critical outcome of the learning process. A higher
final throughput indicates that the RL agent has suc-
cessfully optimized gas limits to maximize transaction
processing.

In Figure 2, we illustrate the gas limit optimization achieved
by the RL agent across all episodes and plot the average gas
limit over the learning rate, and exploration probabilities.
This provides a representation of the RL agent’s learning
progress and performance in maximizing throughput. As
the exploration probability and learning rate increases, the
averaged gas limit decreases, which shows optimizing gas
limit by the RL agent.

Figure 1. The average throughput achieved by the RL
agent w.r.t. block number and exploration probability.

Figure 2. Optimizing gas limit achieved by the RL agent:
average gas limit w.r.t. the learning rate, and exploration
probability.

3.3 GAT-RL and Throughput Maximization
Our GAT-RL method is defined with Proximal Policy Opti-
mization (PPO), RL and sparse tensor support. The code algo-
rithm given in Algorithm 2 (see theorem 2,3) trains the GAT-
RL on the Ethereum dataset and measures its performance
after each epoch for about 10 epochs, as seen in Figure 3; we
train GAT and GAT-RL separately with num_epochs = 1000
though.
In Figure 3, we present the Loss for both GAT and GAT-

RL. The GAT Loss reflects how well the Graph Attention
Network captures and understands the relationships and
patterns in the graph-structured data. A lower GAT Loss
indicates that the GAT is effectively learning meaningful rep-
resentations from the graph. The GAT-RL Loss corresponds
to the case where GAT is combined with the Proximal Policy
Optimization (PPO) algorithm. It represents how well the
policy is being updated to maximize cumulative rewards.
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Algorithm 2: GAT-RL model design
Steps:
1. For each epoch in range(num_epochs):

Create subgraphs for inductive learning
Define and initialize GAT model
Train GAT model on the training data
Compute and store the GAT loss

2. Define the Ethereum optimization RL environment:
Set initial node features and masks (train/test)

Define apply_resource_allocation method
Define calculate_reward method using normal-

ized rewards
3. Define PPO policy and value function networks:

Initialize policy and value function networks
Define policy optimizer and value function optimizer

4. Train PPO agent using PPO algorithm:
for each epoch in range(num_epochs):

Initialize environment state
while not done:

Sample action from policy
Apply action to environment
Observe next state and compute reward
Store state, action, log-probability, reward

Compute advantages using stored rewards
Normalize advantages
Update policy and value function using PPO loss

5. Train GAT-RL in a combined manner:
for each epoch in range(num_epochs):

Train GAT model
Update RL environment with GAT-enhanced

state
Train RL agent using PPO
Combine GAT loss and PPO loss for joint opti-

mization

A lower GAT-RL Loss suggests that the policy updates are
successfully improving the policy’s performance.

3.3.1 Ablation study: In the ablation study we conducted
a value loss comparison between the GAT-RL method and
RL-only method within the latest 1000 blocks range sample
(a good representative of the Ethereum network activity),
two key components were examined. Among the baseline
RL-only and the full GAT-RL method, the latter incorporates
the Graph Attention Network for enhanced gas optimization,
while the baseline RL-only relies solely on reinforcement
learning mechanism. Figure 4 showing value loss with GAT
(GAT-RL) and without GAT (RL) reveals that the GAT-RL
method demonstrates notable improvements in performance
compared to the RL-only baseline although very volatile.
The result underscores the impactful contribution of the
Graph Attention Network in the GAT-RL method, showcas-
ing its effectiveness in optimizing gas usage and enhancing
network efficiency in Ethereum, which establishes the GAT-
RL method as a superior approach for gas optimization in
Ethereum network.

Figure 3. GAT and GAT-RL (PPO) loss over 1000 blocks:
x-Axis is Epoch and y-Axis is Loss

Figure 4. Comparison: Value Loss with and without GAT
over 1000 blocks: x-Axis is Epoch and y-Axis is Loss

3.4 Relative Scaling of Large Ethereum Networks
Applying GCN to a larger scale Ethereum network to ad-
dress scalability and efficiency challenges demands careful
consideration of the data representation and its architec-
ture, where its implementation for a large-scale Ethereum
network requires optimizations like using sparse matrices
and distributed computing to handle the massive amount
of data efficiently. Additionally, one might need to design
custom GCN architectures to achieve better performance
for Ethereum network analysis. To handle such scenarios,
one common approach is to use GraphSAGE (Graph Sam-
ple and Aggregated) (Hamilton et al., 2017), which enables
better scalability and captures more complex relationships
in the data. We implement sparse matrices using PyTorch
Geometric for network scaling, then compare the three meth-
ods for different numbers of Ethereum blocks. This is more
theoretical comparison with relative scaling due to our com-
putational constraints. Scaling GCNs using sparse matrices
involves modifying the conventional GCN equations to effi-
ciently handle sparse adjacency matrices. The formulations
are as follows:
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Table 1. Accuracy/Performance for scaling with GraphConv, GraphSAGE, and GAT, where accuracy is quantified using a train
and test mask split of 50%, applied over 1,000 epochs. Performance is calculated in terms of block processing time.

Accuracy / Performance(sec) GraphConv GraphSAGE GAT
#blocks = 1000 0.73 / 0.8577 0.99 / 0.635 0.99 / 1.215
#blocks = 3000 0.99 / 0.8524 0.99 / 0.558 0.99 / 1.989
#blocks = 9000 0.811 / 17.289 0.297 / 3.870 0.934 / 24.467

3.4.1 GraphConv Neighbor Sampling. The GraphConv
layer performs aggregation over the neighbors of each node,
which involves sampling a fixed-size neighborhood for each
node and aggregating the features of the sampled neighbors.
Given an input feature matrix 𝑋 of shape (𝑁, 𝐷), where 𝑁 is
the number of nodes, 𝐷 is the number of input features per
node, and the sparse adjacency matrix 𝐴 of shape (𝑁, 𝑁 ),
the output feature matrix 𝐻 at each GraphConv layer is
calculated as 𝐻 = 𝜎 (𝐴@𝑋@𝑊 ); where @ represents matrix
multiplication, 𝜎 is the activation function typically ReLU or
another non-linear function, and𝑊 is the weight matrix of
the layer which needs to be learned during training.

3.4.2 GraphSAGE Neighbor Sampling. To handle large
graphs efficiently, GraphSAGE employs neighbor sampling,
which samples a fixed number (𝐾 ) of neighbors for each node.
This helps reduce memory consumption during training and
speeds up computation. The equation for neighbor sampling
involves selecting a random subset of neighbors for each
node 𝑖 based on the adjacency matrix 𝐴:

𝑁𝑖 = sample_neighbors(𝐴, 𝑖, 𝐾) (28)

sample_neighbors(𝐴, 𝑖, 𝐾) is a function that returns a set of
𝐾 sampled neighbors for node 𝑖 from adjacency matrix 𝐴.
The sampled neighbor nodes’ features are aggregated using
mean or sum pooling to create the feature representation for
each node’s neighborhood:

𝐻𝑁𝑖
= sum_pooling(𝐻 [𝑁𝑖 ])/𝐾 (29)

where 𝐻 [𝑁𝑖 ]) represents the feature matrix of the sam-
pled neighbors 𝑁𝑖 , and sum_pooling and mean_pooling are
functions that calculate the sum or mean of the rows of a
matrix.
The output feature matrix 𝐻 is updated with the aggre-

gated neighborhood features to create the final node rep-
resentations for the next layer. By handling the adjacency
matrix as a sparse tensor, we can save memory and computa-
tion time when dealing with large graphs. We use PyTorch’s
sparse_coo_tensor to create a sparse matrix and measure
performance and scalability. PyTorch’s sparse_coo_tensor
is used to create a sparse matrix in CSC format. This for-
mat represents a sparse matrix by storing only the non-zero
elements and their corresponding row and column indices.
Using sparse matrices can significantly reduce memory con-
sumption and speed up computations.

3.4.3 Scaling GCNs using attention mechanism. The
GAT model (Velickovic et al., 2017) introduces an "attention"
mechanism that assigns varying weights to different nodes,
enhancing the model’s adaptability to the unique structure
of heterogeneous networks. In GAT, attention coefficients
(𝛼𝑖 𝑗 ) are computed to capture the importance of neighboring
nodes in aggregating node features. These coefficients are
calculated using an attention mechanism as:

𝑒𝑖 𝑗 = LeakyReLU(𝑎𝑇 [𝑊 · ℎ𝑖 | |𝑊 · ℎ 𝑗 ]) (30)

𝛼𝑖 𝑗 = softmax(𝑒𝑖 𝑗 ) =
exp(𝑒𝑖 𝑗 )∑
𝑘 exp(𝑒𝑖𝑘 )

(31)

where ℎ𝑖 and ℎ 𝑗 are the feature representations of nodes
i and j, W is a learnable weight matrix, and a is a shared
parameter. After computing the attention coefficients, ℎ𝑖 are
aggregated based on their neighbors’ importance using the
attention coefficients (𝛼𝑖 𝑗 ), and is then used for subsequent
computations by taking the weighted sum of its neighboring
nodes’ features. To scale using sparse matrices, we utilize
PyTorch Geometric and its sparse tensor capabilities.
We show accuracy and performance between GraphConv,
GraphSAGE, and GAT in Table 1 for different numbers of
blocks. Accuracy is quantified using a train and test mask
split of 50%, applied over a comprehensive series of 1,000
epochs. Performance is calculated in terms of block process-
ing time. As observed in the Table, our GAT-based method
appears to outperform other sampling algorithms in terms
of combined accuracy and performance (in seconds) when
number of blocks increase from 1000 to 9000.

4 Conclusion
This study aimed to investigate information propagation of
the Ethereum network using a combined GAT-RL method
where we focused on the research gap in utilizing graph at-
tention network to facilitate information propagation, while
using reinforcement learning to optimize gas limit in Ethereum
network. We introduced 3 theorems to investigate the opti-
mal gas limit that maximizes the throughput. We performed
an ablation study showing that the GAT-RL method demon-
strates notable improvements in performance compared to
the RL-only method, which underscores the impactful con-
tribution of the GAT in the combined GAT-RL method for
producing an embedding where RL agent could learn the
best actions to take in various network states, ultimately
improve the throughput. Applying GAT-RL to large-scale
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blockchain network presents scalability challenges; in due
course, we compared accuracy and performance among three
GNN approaches: GraphConv, GraphSAGE, and GAT. The
results show that GAT outperforms others in terms of accu-
racy/performance in producing the embedding, which is the
basis for RL calculation in our combined GAT-RL method.
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