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Abstract
Achieving efficient Federated Learning (FL) in large-scale
cross-device deployments is challenging, in part due to strag-
glers and stale updates. However, another key yet often over-
looked challenge is client unavailability. Some clients se-
lected for training remain inactive and fail to participate.
Unlike stragglers, which eventually return updates, unavail-
able clients provide no updates, causing rounds to stall. Even
when they do return, they introduce significant delays, both
of which increase time-to-accuracy. Existing FL approaches,
including synchronous FL (SyncFL) and asynchronous FL
(AsyncFL), fail to address client unavailability– SyncFL suf-
fers from long waits, while AsyncFL experiences increased
update staleness. Some recent client selection strategies as-
sume oracular knowledge of client availability and prioritize
historically high-utility clients. Not only is this an unrealistic
assumption, but these strategies also rely on stale client util-
ity values, which become increasingly stale as client unavail-
ability rises. To enable scalable and efficient FL in real-world
scenarios, we argue that it is crucial to address fluctuating
and high client unavailability. This work highlights its impact
on FL and underscores the need for a real-time, availability-
aware mechanism that improves client selection and ensures
high-quality update aggregation, ultimately reducing time-
to-accuracy.
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Trace FedScale[10] LinkedIn[20] Google[3]
Client Availability 10-20% 20-80% 10-60%

Table 1. Real-world client availability rates from prior works.

1 Introduction
Federated Learning (FL) has emerged as the predominant
paradigm for training machine learning models in a privacy-
preserving manner on distributed data across a vast number
of clients in the cross-device FL setting. It enables decentral-
izedmodel trainingwithout requiring raw data to leave client
devices. Achieving fast time-to-accuracy—the time required
to reach a target accuracy—is critical for accelerating model
iteration and deployment in practical scenarios [3, 12, 18].

A major challenge in large-scale FL deployments is the in-
herent unavailability of clients, which significantly impacts
time-to-accuracy. We define unavailability as the inability
of selected devices to participate in training due to being
inactive. Unlike stragglers—clients that are slow but even-
tually return updates—unavailable clients fail to participate
in training entirely, leading to stalled rounds and slower
convergence. Prior works [3, 10, 20] largely overlook this
issue, often assuming that clients will consistently partici-
pate. However, real-world FL jobs span hours to days, during
which clients experience fluctuations in availability due to
factors such as network connectivity, device battery levels,
and application activity [1]. Consequently, many clients re-
main unavailable for extended periods, as shown in Tab. 1,
posing a significant challenge to effective training in cross-
device FL settings.
Synchronous FL (SyncFL) [3] operates by selecting mul-

tiple clients to train in each round. Each client receives the
latest global model weights, performs local training, and re-
turns updates to the aggregator which combines them to
produce a new global model before proceeding to the next
round [15]. The primary limitation of SyncFL is the impact
of straggler clients on the learning process. The slow clients
delay training since the server must wait for all selected
clients to return updates before continuing [3]. In contrast,
Asynchronous FL (AsyncFL) [17, 22] aggregates updates as
they arrive, thereby mitigating bottlenecks caused by slow
clients. However, this approach introduces staleness in up-
dates, where outdated updates from slower clients adversely
affect global model convergence and accuracy.
Both SyncFL and AsyncFL fail to address the issue of un-

availability. They select clients in an availability agnostic
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Features Flower[2] FedML[6] Flame[5] FedScale[10]
Asynchronous FL ✗ ✗ ✓ ✓
Availability Aware ✗ ✗ ✗ ▲
Pluggable Selection ✗ ✗ ✓ ✓
Intelligent Selection ✗ ✗ ✗ ▲

Pluggable Aggregation ✗ ✗ ✓ ✗
Intelligent Aggregation ✗ ✗ ✗ ✗

Table 2. Features across FL Systems. ✓: Yes, ✗: No, ▲: Partial

manner and unavailable clients return no updates if selected.
This results in slower and reduced number of updates for ag-
gregation, delaying the training progress [4]. Recent works
have proposed improving client selection strategies [7, 11] by
prioritizing clients based on past observations of their update
quality and availability. However, these methods rely on stale
utility metrics, as they assume a client’s utility can only be
assessed post-training. Degree of utility staleness increases
with longer unavailability durations of the clients. Further-
more, past observations of availability cannot accurately
predict a client’s current or future availability state, making
these approaches ineffective in high-unavailability settings.
As shown in Tab. 2, current FL systems lack accurate, real-
time unavailability tracking mechanisms that can scale to
large client populations. Their underlying assumption—that
all clients are available for training—not only leads to subop-
timal client selection but also under-utilization of currently
available clients, as other transiently unavailable clients con-
tinue to be considered for training.
We highlight the need for a mechanism to address dy-

namic unavailability in real-world cross-device FL, thereby
making it more robust and reducing time-to-accuracy. Our
work demonstrates the benefits of (a) incorporating real-time
availability monitoring at the systems level and (b) ensuring
that the global model receives fast and high-quality updates
at the algorithmic level. Specifically, we analyze the impact
of unavailability, showing when and how it matters, and
provide insights into potential improvements for FL systems.
These improvements can pave the way for more scalable and
efficient FL deployments in practical scenarios.

2 Background
2.1 SyncFL and AsyncFL Overview
SyncFL. Synchronous Federated Learning [3] follows a syn-
chronized approach where multiple selected clients perform
training in a round, and their resulting updates are aggre-
gated together to revise the global model. This method is
inspired by large-batch synchronous SGD [15], a technique
proven to be highly effective in centralized data centers. Dur-
ing each training round, a subset of clients, determined by
a parameter known as cohort size, computes the gradient
of the loss function based on their local data. These client-
side gradients are then aggregated by the central server to
perform a weighted global model update. The synchronous
nature ensures that all selected clients contribute in every

round, ensuring data from these clients equally influences
the learning process—particularly important in heteroge-
neous data settings. SyncFL is also better suited for privacy,
as training and aggregating updates across a large number of
clients makes inference attacks ineffective. However, SyncFL
is prone to the issue of stragglers as rounds proceed at the
pace of the slowest client.
AsyncFL. Asynchronous Federated Learning [22] offers

a promising approach to accommodate the varying compute
and connectivity capabilities of the clients in the highly het-
erogeneous cross-device FL settings. Much of the existing
research has focused on mitigating the impact of stragglers.
Notably, Papaya [7] and FedBuff [17] address this issue by
buffering all received model updates and incorporating them
into the global model as soon as the buffer size reaches a
threshold size, called the agg-goal. This eliminates the de-
pendency to wait for slow devices to return updates. In cases
of update delays, the global aggregation can proceed, while
updates from the slower clients would be utilized in a future
round. This also brings to light a major drawback of AsyncFL
where slow devices risk providing highly stale updates. Stal-
eness is defined as the difference between the model version
number at the server (when it receives the client update) and
the model version number that the client started training
with. More formally, staleness (𝑆) is calculated as 𝑆 = 𝑣𝑠 − 𝑣𝑐 ,
where 𝑣𝑠 is the current global model version number and 𝑣𝑐 is
themodel version that the client trained on. Stale updates can
be detrimental to the training progress andmay even degrade
the final convergence accuracy. Previous works [17, 22] in-
corporate staleness mitigation measures during aggregation
to curb the impact of stale updates. However, these methods
harshly penalize even moderately stale updates from slower
devices, leading to slower overall training, and more so in
heterogeneous settings. As a result, there is an increased
likelihood of client participation skew in AsyncFL where
faster clients participate more often than slower clients. This
too is detrimental for the global training process.

2.2 Heterogeneity in cross-device FL
Data heterogeneity in FL arises because each client has its
own data, resulting in non-identical data distributions. While
there have been efforts to handle data heterogeneity [21],
these approaches often assume high device participation in
every round, which is often infeasible in real-world FL set-
tings. Methods that address data heterogeneity by sharing
local data [8] raise additional concerns such as high commu-
nication overhead and potential privacy violations.
Beyond data heterogeneity, client heterogeneity presents

another important challenge. Clients differ in their computa-
tional power, storage availability, and network connectivity.
This can result in stragglers and on-device training failures
in the FL setting. In practice, a common strategy is to drop
slower or resource-constrained clients if they fail to meet
the bare minimum training requirements in a specified time
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Fig. 1. Training delays of Fedbuff and Papaya client
devices. Training delays from [7, 17] are typically <120s.

window [3]. However, this approach reduces the pool of
active clients contributing to training and risks derailing
the process if the dropped clients possess unique data dis-
tributions. Therefore, designing frameworks that robustly
handle varying system capabilities while simultaneously ac-
commodating heterogeneous data distributions is essential
for practical, large-scale FL deployments.

2.3 Unavailability vs. Stragglers
Real-world cross-device FL deployments enable privacy pre-
serving model training but face significant practical chal-
lenges. A key issue is the variability in round durations
caused by device heterogeneity. Devices with latest hard-
ware or smaller datasets complete training faster, while those
with dated hardware or larger datasets require more time.
Furthermore, devices communicate over wide-area networks
(WANs), where bandwidth fluctuations can delay or drop the
model updates. Devices impacted by such delays are referred
to as stragglers—they contribute updates but with a lag.
Beyond stragglers, devices can also become unavailable

due to dynamic runtime conditions. User-facing applications
often take priority over FL training, resulting in interruptions
when devices are in use, have low battery, lack Wi-Fi con-
nectivity, or do not have the required application running in
the foreground [3, 20]. Unlike stragglers, unavailable devices
temporarily pause their participation and resume only when
conditions improve, by returning to the available state. This
transient unavailability necessitates the exploration of both
system and algorithmic approaches to tackle the problem.
While both stragglers and unavailability impact real-world
FL training, unavailability remains an unresolved challenge.
In the following section, we quantitatively differentiate these
conditions to better distinguish between stragglers and un-
available devices.
Occurrence. In general, training devices exhibit mini-

mal variability in their per-round training times. Figures 1a
and 1b showcase the training duration distribution across
millions of mobile devices in production. While most de-
vices complete a single round quickly, the longer training
times are relatively predictable, stemming from static factors
such as slower hardware or larger local data partitions. How-
ever, unpredictability can sometimes arise due to network
delays. Device availability, in contrast, is much more erratic,
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Fig. 2. Real-world device availability and unavailabil-
ity durations. Availability/unavailability spans from a few
minutes to several hours [14].

driven by factors like individual users’ device load and vari-
ous on-device conditions, which are difficult to predict. On a
larger scale, device availability across regions or populations
tends to follow diurnal patterns. Real-world traces [3, 10, 20]
reveal that device availability fluctuates between 10% and
80% of the client population, as shown in Table 1, while still
maintaining the diurnal variation.
High variability. FedBuff [17] and Papaya [7] collected

per-round training times from millions of devices in real-
world deployments. These runtimes follow a predictable
half-normal distribution, ranging from a few seconds to less
than two minutes (Fig. 1a and Fig. 1b). Slower devices in
this distribution are considered stragglers. In contrast, client
behavior dynamics from the real-world MobiPerf [14] trace
follow a much broader distribution. The availability and un-
availability durations of devices exhibit orders of magnitude
higher variability, ranging from a few minutes to several
hours (Fig. 2a and Fig. 2b). Similar patterns can be observed
in other publicly available traces [1, 3, 10, 14, 20].

3 Impact of Client Unavailability
We now aim to quantify and analyze the detrimental effect
of transient client unavailability in FL. We evaluate both
synchronous and asynchronous FL paradigms across (a) syn-
thetic and (b) real-world client unavailability traces. The
collected evidence brings attention to gaps in present-day
algorithms and systems for FL, and makes a case for treating
client unavailability as a new fundamental concern in FL
deployments.

3.1 Experiment Setup
Testbed. Our setup utilizes an emulated distributed testbed
with Flame [5] and MQTT [13]. Flame replicates the cross-
device FL topology with clients training on their partitioned
local datasets, and a cloud-based aggregator (server). The
server houses a control-plane for communication, a selector
for per-round trainer selection and the aggregator to assimi-
late trainer updates. The experiments run on a node with 8
NVIDIA A40 GPUs, 500GB RAM and AMD EPYC 7513 32-
Core processor with 128 CPUs. The FL server and all clients
are hosted on it.
Task, dataset, model. We perform FL training for an

image classification task on the CIFAR-10 dataset (60K 32x32
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images across 10 classes), using a convolutional neural net-
work (CNN) with 12 layers and ≈0.5M parameters.

Execution Strategies. SyncFL is represented by two strate-
gies: OORT and OORT∗. OORT [11] is the SOTA SyncFL
selection baseline. However, OORT is not inherently avail-
ability aware. An oracular version of OORT is the OORT∗
strategy, where the entire client availability trace is given a
priori. With oracular knowledge, this strategy is guaranteed
to select trainers only from those available to train.

For AsyncFL, FedBuff [17] is the SOTA baseline. However,
its random client selection algorithm is inferior compared to
OORT. Therefore, we implement A-OORT— an asynchronous
strategy based on OORT. While it uses the same underlying
OORT selection algorithm, we incorporate additional state
management to enable fine-grained asynchronous trainer
selection, compared to the once-per-round trainer selection
in SyncFL OORT. To the best our knowledge, this is the most
performant AsyncFL strategy yet. Since A-OORT doesn’t
exist in literature and instead builds upon existing meth-
ods, it is not a baseline, but rather an optimistic strategy
for comparison. It combines the benefits of both FedBuff
(AsyncFL aggregation) and OORT (selection). Like OORT, A-
OORT also has two variant strategies: availability unaware
A-OORT, and an oracular A-OORT∗.

In our experiments, we vary the client unavailability traces
as detailed in §3.2 and §3.3. We denote the strategies as
S(X), where S represents the strategy and X represents ei-
ther the average client unavailability percentage or the the
unavailability trace for that experiment, as applicable. For
example, OORT(20%) and OORT∗(20%) refer to the OORT
strategy–availability unaware, and the oracular OORT∗ strat-
egy respectively, on a trace with 20% client unavailability,
on average.
Training workload. Experiments use a centralized FL

topology with all clients directly connected to an aggregator.
Clients. We emulate 300 clients that not only exhibit data

and system heterogeneity, but also exhibit varied availability.
First, we simulate data heterogeneity by partitioning the
training dataset using the Dirichlet(𝛼) distribution across
clients. Second, clients simulate training delays of 1 − 60s
for system heterogeneity. These delays match the training
run-times of 1 million+ devices [7, 17] that exhibit perfor-
mance variability due to differences in hardware, network,
and datasets, as shown in Fig. 1a and Fig. 1b. The delays
distinguish the fast and straggler clients in the population. Fi-
nally, clients exhibit availability patterns based on the traces
in Fig. 4. Additional details about client unavailability pat-
terns are provided in §3.2 and §3.3.

For a fair comparison of strategies in each experiment, an
identical client population setup is emulated across runs, i.e.,
the data distributions and unavailability patterns of clients
are identical. Additionally, the test dataset used to evaluate
the global model at the aggregator remains unchanged across
all runs.
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Fig. 3. Synthetic trace. The performance of both SOTA
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Fig. 4. Synthetic and real-world client availability traces.

Metrics. We track the wall-clock time required by all
strategies to achieve 70% test accuracy on the task. Produc-
tion systems prefer lower time-to-accuracy. We also track
low-level telemetry such as staleness and utility of updates,
and aggregation stalls at the server to explain our insights.

3.2 Synthetic Availability Trace
Wefirst evaluate FL training under a controlled unavailability
setting and homogeneous data partitions.
Client behavior. Fig. 4a shows a client population aver-

aging 80% availability, with some fluctuations. Thus, 20%
clients are unavailable to train at any time. This trace was
synthesized from a binomial distribution parameterized by
the size of the client pool and probability for trial success. For
each successful trial, the duration of trainer unavailability is
10 minutes.

Fig. 3 shows the training progress of the SOTA SyncFL
OORT baseline and its AsyncFL equivalent strategy A-OORT
in 0% and 20% client unavailability, respectively. Some key
observations from the experiment are as follows:
Observation 1: Significant drop in training performance

in both OORT and A-OORT with modest unavailability. This
synthetic 20% unavailability is a rather lenient deployment
scenario compared to high-unavailability scenarios depicted

117



Client Availability in Federated Learning: It Matters! EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

in Tab. 1. In the figure, A-OORT(0%) and OORT(0%) depict
training progress in the presence of 0% unavailability i.e.
100% availability. Both strategies in 100% availability make
steady progress towards the target accuracy. Their training
curves form a reference performance upper-limit for com-
parison. However, Upon introducing 20% unavailability, it
is seen that both OORT(20%) and A-OORT(20%) face perfor-
mance drops of > 10% in their accuracy within the short
experiment runtime of 6 hours. The accuracy-time elapsed
gap is further expected to widen as the 0% unavailability
deployments attain convergence fast, while OORT(20%) and
A-OORT(20%) would continue to struggle due to transient
client unavailability. Thus, we conclude that current SOTA
FL algorithms cannot handle unavailability out-of-the-box,
and must be improved.

Observation 2:A-OORT completes rounds faster thanOORT,
but forfeits some gains with unavailability. A-OORT, with its
design of fast asynchronous aggregations, typically loses
some performance due to update staleness, especially in
100% availability settings. However, high unavailability af-
fects update staleness in two ways. First, as unavailability
increases, the pace of updates and as a consequence, aggrega-
tion frequency, decreases. This lower aggregation frequency
is illustrated by the wider gaps between consecutive square
markers in A-OORT(20%) compared to A-OORT(0%). The
square markers appear after every 200th aggregation and
are visibly further apart in the run with unavailability. Fewer
aggregation rounds indirectly help reduce staleness of up-
dates, since staleness 𝑆 given by 𝑆 = 𝑣𝑠 − 𝑣𝑐 , now evaluates
to lower values. Second, and contrary to this, unavailability
can also significantly increase update staleness. This arises
from trainers that receive global weights but become un-
available during or just before training begin. When such
clients eventually return weights, their updates are stale by a
large margin (unavailability durations are very high Fig. 2a).
As a result, these client updates cannot make meaningful
contributions to the global model.

Observation 3: OORT progresses slowly but attains higher
accuracy than A-OORT. In contrast to A-OORT, OORT waits
for all model updates before aggregating and distributing
a new model version to clients. This synchronization step
leads to longer per-round times compared to AsyncFL. This
is due to stragglers as can be seen in OORT(0%) where the cir-
cle markers representing every 200th aggregation are more
spread apart, representing longer per-round durations. Fur-
ther, as the unavailability increases, the time taken to receive
updates from trainers elongates. This leads to even slower
per-round progress, as shown by the even more dispersed
circle markers in OORT(20%). However, since there are no
stale updates, the learning per-round in OORT is significant
and the weighted averaging yields a more impactful push to-
wards the global model minima. This is contrary to the faster,
more frequent but less impactful aggregations in A-OORT.

Observation 4: A-OORT is more resilient to unavailabil-
ity than OORT. This is despite the lower per-round learning
progress in A-OORT strategy compared to the OORT base-
line. Due to higher concurrency in AsyncFL—by design, A-
OORT is able to tap into a larger pool of available of clients.
Moreover, it is able to extract more updates at a higher fre-
quency from these clients. Thus, it is able to gainmore knowl-
edge from the clients for global model training. This ensures
that several small updates contribute to the global model
in A-OORT(20%), compared to fewer but more impactful
aggregations in OORT(20%). As a result, the accuracy degra-
dation in A-OORT(20%) is observed to be lower than the ac-
curacy degradation in the OORT(20%) baseline. For the given
6 hour experiment in Fig. 3, the accuracy degradation in A-
OORT(20%) was found to be 9.5%, which is 2.5% lower than
the 11% accuracy degradation seen in OORT(20%). These
gaps are relative to A-OORT(0%) and OORT(0%) respectively.
However, given the limitations of SyncFL in high unavail-
ability scenarios, the time-to-accuracy gap is expected to
widen further due to prolonged training stalls in SyncFL.

3.3 Real-World Availability Trace
This set of experiments evaluates SOTA FL training under
real-world unavailability conditions, along with heterogene-
ity in data distribution.
Client Behavior. To faithfully emulate real-world FL de-

ployments, we incorporate all three levels of heterogeneity.
First, we partition the dataset across 300 clients with varying
levels of 𝐷𝑖𝑟 (𝛼). Second, we continue to emulate system
heterogeneity through client training runtimes. Lastly, we
use a real-world client unavailability distribution 4b. These
three factors enable us to comprehensively evaluate the per-
formance of the OORT baseline and A-OORT strategy. The
client unavailability is notably high, exceeding 75%. More-
over, as shown in Fig. 2a and Fig. 2b, unavailability durations
are disproportionately longer than availability durations,
complicating real-world FL training. For the experiment,
each client simulates the behavior of a randomly selected de-
vice from the 130K+ devices in the MobiPerf device trace [14].
The original 7-day trace was slightly compressed to represent
a 6-day equivalent. As specified earlier, the clients’ availabil-
ity may or may not be known to the aggregator. Oracular
strategies, OORT∗ and A-OORT∗, have client availability a
priori, while OORT(M) and A-OORT(M) operate without any
such information.
The results of FL training in real-world settings are pre-

sented in Fig. 5, with the key observations summarized be-
low.
Observation 1: The SOTA OORT baseline and A-OORT

strategy completely break down under high unavailability.
Fig. 5 illustrates the accuracy gap between the current SOTA
algorithms: OORT baseline and A-OORT strategy, compared
to their oracular counterparts, OORT∗ and A-OORT∗, which
have prior knowledge of client availability. This accuracy
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Fig. 5. Real-world trace. SyncFL and AsyncFL suffer by 46− 57% in time-to-accuracy compared to their oracular counterparts:
OORT∗ and A-OORT∗. The availability unaware strategies, A-OORT and OORT, face stalls and do not cross even 100 rounds.

gap significantly hinders the efficient deployment of FL for
real-world model training on edge devices. Without availabil-
ity information, OORT and A-OORT fail to make meaningful
progress in training, remaining stuck at a low (10%) train-
ing accuracy for over five hours. In contrast, OORT∗ and
A-OORT∗, despite using the same learning algorithms, im-
prove training efficiency by selecting only from the pool
of available trainers. This results in accuracy levels rang-
ing from 46% to 57%, as data heterogeneity decreases from
𝐷𝑖𝑟 (𝛼) = 0.1 (most heterogeneous) to 𝐷𝑖𝑟 (𝛼) = 100 (most
homogeneous).

Observation 2:Oracular knowledge enables sustained train-
ing progress. Note that the circle markers on the OORT∗
baseline are approximately equally spaced w.r.t each other
and so are the square markers on the A-OORT∗ strategy
w.r.t each other in Fig. 5. This indicates that the 200th round
aggregations occur at nearly the same time for both strate-
gies, suggesting similar per-round training times despite
data heterogeneity and high client unavailability. In contrast,
availability-unaware strategies like A-OORT and OORT ex-
perience frequent stalls and fail to reach even 100 rounds.
Addressing client unavailability in FL is crucial not only for
improving accuracy but also for ensuring steady training
progress. A deeper analysis of A-OORT and OORT runs re-
vealed that many weight updates sent to trainers were not
utilized immediately. This occurred because selected train-
ers were either already unavailable or became unavailable
shortly after receiving model weights. Thus, while the ag-
gregator assumes that the trainer is making progress, it is
not. This miscommunication between the trainers and the
aggregator results in long delays and inefficient utilization
of available clients.
Observation 3: The combination of unavailability and

data heterogeneity significantly hinders training. As shown
in Fig. 5, training progress becomes increasingly irregular
and unstable across different strategies as deployment scenar-
ios shift from homogeneous (easier) to heterogeneous (more
challenging) data distributions.While the A-OORT∗ strategy
appears to exhibit a more stable learning curve compared
to OORT∗, a closer examination reveals that this stability is
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Fig. 6. Aggregators using SOTA FL algorithms experience
significant stalls ranging from 102 to 103 seconds per-round
in both synthetic and real-world unavailability traces.
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Fig. 7. The staleness and utility of trainer updates are heavily
influenced by both client unavailability and data heterogene-
ity.

not as robust as it initially seems. The variability in training
progress highlights the importance of selecting clients not
only based on availability and local training speed but also on
the data they possess. More informed client selection could
lead to a more stable learning trajectory for the global model
at the aggregator, ultimately accelerating training progress
and reducing time-to-accuracy.

3.4 Analyzing the Unavailability Problem
This section provides an in-depth analysis of the end-to-end
results presented in §3.2 and §3.3.
Unavailability Stalls the Aggregator. A key factor be-

hind the lack of significant training progress for theOORT(M)
baseline and the A-OORT(M) strategy in Fig. 5 is aggregator
stalls. The wide distribution of these stalls is illustrated for
both synthetic and MobiPerf traces in Fig. 6. In the synthetic
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experiment (Fig. 6a), A-OORT(0%) performs aggregations
rapidly, with a median round duration of < 10 seconds, ow-
ing to its 100% trainer availability and asynchronous aggre-
gation. In contrast, OORT(0%) experiences slightly longer
round durations ( 10 seconds) as it waits for stragglers. How-
ever, as unavailability increases, both A-OORT(20%) and
OORT(20%) frequently select clients that are either unavail-
able or become unavailable shortly after receiving the global
model for training. This system inconsistency, i.e., the ag-
gregator waiting for an update while the trainer remains
unavailable, causes stalls. These delays reach up to 100s of
seconds per round in the synthetic 20% unavailability sce-
nario, cumulatively increasing time-to-accuracy.
Moreover, in the real-world high unavailability scenario

(Fig. 6b), these stalls escalate drastically to ∼ 104 seconds (or
up to ∼ 2.8 hours), effectively halting training for OORT(M)
and A-OORT(M). In contrast, their oracular counterparts per-
form significantly better. OORT∗ limits its stalls to at most a
few hundred seconds. These stalls are due to stragglers and
clients that transiently become unavailable during training.
A-OORT∗(M) limits tail latency to approximately ∼ 10 sec-
onds by maintaining a high concurrency level from among
the available trainers.

Unavailability Increases Update Staleness. Sometimes,
trainers become unavailable after receiving model weights.
By the time they regain availability and return updates, the
global model has iterated through several versions, leading to
staleness in the updates. Staleness is defined as the difference
between the current global model version and the version the
trainer used for training. In Fig. 7a, we observe that staleness
is >10 on average for A-OORT(20%), as the strategy remains
unaware of client unavailability. However, the staleness issue
is mitigated in strategies with 100% and oracular availability,
such as A-OORT(0%) and A-OORT∗, where staleness is <5.
The long tail for A-OORT(0%) and A-OORT∗ is attributed
to devices that temporarily become unavailable during local
training.

Unavailability ExacerbatesHeterogeneity Issues.Data
heterogeneity causes trainers to nudge the global model to-
wards minimizing their local loss, which can skew the model
towards their specific subset of classes. Fig. 7b shows the
trainer utility values observed and used over time by the
A-OORT∗ strategy on the MobiPerf availability trace. The
results indicate that higher data heterogeneity leads to a
higher standard deviation of trainer update utilities. This is
because trainer update utilities are closely tied to their local
data distributions, which become more disparate in high
data heterogeneity scenarios. Moreover, with widespread
unavailability as observed in the MobiPerf trace, the train-
ing process becomes further skewed in favor of the more
available clients. To prevent overfitting to a subset of the
data distribution, the selection strategy must consider both
unavailability and data heterogeneity when making client
selections.

4 Opportunities to Tackle Client
Unavailability

While enhancing existing frameworks with real-time client
availability tracking is essential for robust FL in high unavail-
ability settings, it alone cannot address all the associated
challenges. High client unavailability and heterogeneity in-
troduce several issues that impact time-to-accuracy. Overall,
it provides a unique opportunity to rethink not only the sys-
tem design but also the selection and aggregation algorithms,
to make FL more robust for real-world deployments.

Opportunity 1: Intelligent trainer selection. Our first
key observation is that the selector needs additional informa-
tion for improved client selection decisions. An intelligent
trainer selection should not only consider current client avail-
abilities, it should also balance it with up-to-date information
about their speed, data distribution and update quality. Cur-
rent frameworks [7, 11] collect such data only after training
is performed, which may result in misprioritization from
among the available clients, e.g. selecting slow or low data
utility clients over ones that can expedite the training pro-
cess. This highlights the need to extend client selection with
a new lightweight mechanism that captures most recent
client utility, along with a new algorithm that incorporates
this utility when selecting trainers. By using a lightweight
mechanism, the clients can reliably relay the required infor-
mation even if they do not have sufficient available power
or compute to train.
In current FL paradigms, there is a rigid distinction be-

tween available and unavailable clients—a client is either
available to train or it is not. Since client state is a continuum
w.r.t power, compute and network availability, we believe
that this rigid distinction is flawed and detrimental to the
model training process. It leads to under-utilization of clients
that can be used to aid the training process, even if it is just
in some limited capacity. It is known that the resource re-
quirements for model inference are substantially lower than
the full-fledged back-propagation required for training. If
utilized, it could enable the low-resource clients to partici-
pate and aid FL, potentially reducing the time-to-accuracy.
Thus, given prevalence of high-unavailability scenarios in
real-world cross-device FL deployments, the aim should be
to leverage all the clients, even the ones without capacity to
train.
Opportunity 2: Effective aggregation of model up-

dates. The second key observation is that aggregating stale
updates with less penalty can sometimes benefit the global
model by speeding up training. This is because the staleness
of an update is not the only indicator of its informational
value to the global model [9, 16, 19]. Thus, update staleness
and update quality create an interesting trade-off space that
is yet to be explored in AsyncFL aggregation.
Stale updates are heavily penalized in current works [17,

22]. The AsyncFL aggregation functions are parameterized
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by round-based staleness. A weighted average of updates is
performed, where the weight of each update is inversely pro-
portional to its staleness. However, such approaches heavily
penalize updates with even moderately low staleness. For
example, clients see their contributions reduced significantly
(0.3× and 0.016× using Fedbuff_poly and AsyncFL_hinge,
respectively, in [22]).
While it is true that highly stale updates can harm train-

ing, some client updates might still help the global model
learn about unseen classes of data. This is especially true in
scenarios of high data heterogeneity. Client updates from
disparate data distributions are needed to make fast learning
progress. Thus, there is a need for the aggregator to navigate
this tradeoff space effectively, and weigh the client updates
in a more nuanced manner.
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