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Graph Neural Networks (GNNs) have recently gained attention due to their
performance on non-Euclidean data. The use of custom hardware architec-
tures proves particularly beneficial for GNNs due to their irregular memory
access patterns, resulting from the sparse structure of graphs. However,
existing FPGA accelerators are limited by their double buffering mecha-
nism, which doesn’t account for the irregular node distribution in typical
graph datasets. To address this, we introduce AMPLE (Accelerated Message
Passing Logic Engine), an FPGA accelerator leveraging a new event-driven
programming flow. We develop a mixed-arithmetic architecture, enabling
GNN inference to be quantized at a node-level granularity. Finally, prefetcher
for data and instructions is implemented to optimize off-chip memory access
and maximize node parallelism. Evaluation on citation and social media
graph datasets ranging from 2K to 700K nodes showed a mean speedup of
243× and 7.2× against CPU and GPU counterparts, respectively.
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1 Introduction
Graphs serve as powerful representations for capturing relation-
ships between entities, which are represented as nodes, connected
together by edges. This structure enables modeling a wide range
of complex systems, including social networks [Alamsyah et al.
2021], biological interactions [Wu et al. 2021], and recommendation
systems [Wang et al. 2021]. Graph Neural Networks (GNNs) have
emerged as a transformative approach for processing graph data,
designed to learn from complex relational information by exploit-
ing the interconnections within the graph [Kipf and Welling 2016;
Veličković et al. 2017].
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Inference on GNN models can be divided into two main compu-
tational phases, (1) Aggregation and (2) Transformation [Gilmer
et al. 2017]. In the Aggregation phase, a permutation-invariant func-
tion such as summation or mean is applied over the feature em-
beddings of a node’s neighbors. The results of this phase are then
utilized in the Transformation phase, which consists of a fully-
connected layer used to generate the updated feature embedding for
each node. While the Transformation phase presents a highly regu-
lar computational pattern, which can be effectively accelerated on a
parallelized device such as a GPU, the Aggregation phase involves
many irregular memory accesses due to the random and sparse
nature of typical graph data. Additionally, aggregation latency is a
function of a node’s degree, which follows a highly non-uniform
distribution. As such, an efficiently-designed GNN accelerator needs
to alleviate the computational irregularity of the Aggregation phase
while leveraging the regularity of the Transformation phase [Yan
et al. 2020].
Although CPU memory systems are a mature and highly opti-

mized technology, the sparse structure of graph data renders tradi-
tional cache systems less effective, since node aggregation incurs
a high number of accesses to non-contiguous memory ranges. In-
ference on GPUs offers higher performance due to the deep level
of parallelism, however, these devices are limited by high-latency
memory management mechanisms. Additionally, there is no sup-
port for inter-phase pipelining, meaning aggregation results must
be stored into off-chip memory before being re-fetched for the trans-
formation phase. Finally, modern devices have limited support for
computation with low-precision numerical formats.

These considerations have motivated the design of several GNN
accelerators. HyGCN leverages a set of Single Instruction Multiple
Data (SIMD) cores for aggregation, and a systolic array for node
transformation [Yan et al. 2020]. Meanwhile, GenGNNwas proposed
as a model-agnostic framework for GNN acceleration, addressing
the gap between the development pace of GNN models and custom
accelerators [Abi-Karam et al. 2022] through High-Level Synthe-
sis tools. Table 1 summarizes the characteristics of available GNN
hardware platforms. Despite the benefits of previously proposed
GNN accelerators, (i) the double-buffering mechanism deployed in
HyGCN is not well suited for graph computation due to the non-
uniform distribution of node degrees. Under this paradigm, low
degree nodes must wait for higher degree nodes before computation
can proceed, causing a high number of pipeline gaps. This high-
lights the need for an event-driven programming flow, where
nodes are independently allocated resources and scheduled onto
the accelerator. Additionally, (ii) neither accelerator offers hardware
support for model quantization. As observed by Tailor et al. [Tailor
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Table 1. Summary of graph processing features across hardware platforms. Although CPU parallelization is possible, multi-threaded CPUs have limited
core count compared to parallelized accelerators. Event-driven programming is possible in GPUs, however computation does not follow a node-centric flow.
Although pre-fetching is possible in GenGNN, all incoming messages for nodes in flight are required to be stored on-chip. Finally, no existing accelerators
support arbitrary multi-precision computation.

Hardware Platform Parallelization Event-Driven Programming Node Pre-Fetching Multi-Precision

CPU (Intel Xeon) ✗ ✓ ✗ ✗

GPU (RTX A6000) ✓ ✓ ✗ ✗

HyGCN [Yan et al. 2020] ✓ ✗ ✗ ✗

GenGNN [Abi-Karam et al. 2022] ✓ ✗ ✓ ✗

AMPLE ✓ ✓ ✓ ✓

et al. 2020], the accuracy cost of quantization in GNNs is predom-
inantly due to the aggregation phase and directly correlated to a
node’s degree. As such, casting low-degree nodes to lower-precision
formats while preserving high-degree nodes in high precision leads
to reduced memory cost and resource usage at a low cost to model
accuracy. Finally, (iii) existing accelerators require on-chip buffering
of node embeddings for the entire input graph. As such, these have
limited applicability for inference on large graphs (> 100𝑘 nodes)
where embeddings cannot feasibly be stored on-chip, highlighting
the need for a node-centric pre-fetching system to hide memory
access latency while the accelerator is busy.
We address these shortcomings by introducing a novel GNN

accelerator, AMPLE, and contribute the following:
• We showcase an event-driven programming model for GNN
acceleration, by enabling the host to program nodes asyn-
chronously through memory-mapped registers.
• We propose an architecture featuring a heterogeneous pool
of multi-precision Aggregation Cores connected through a
Network-on-Chip, which are dynamically allocated to nodes
according degree and precision.
• We evaluate AMPLE on large-scale graph datasets ranging
from 2K to 700K nodes, achieving an average speedup of 243×
and 7.2× compared to CPU and GPU baselines, respectively.

The body of this paper is structured as follows. Section 2 covers
background on GNNs and neural network quantization. Section 3
explains the architecture of the AMPLE accelerator, including how
each high-level feature is achieved at the circuit level. Finally, Sec-
tion 4 explains the testing methodology and experimental results
against CPU/GPU baselines.

2 Background

2.1 Graph Representation
A graph 𝐺 = (V, E) is a set of nodes/vertices V and edges E.
The set of feature representations at layer 𝑙 is denoted by matrix
𝑋 (𝑙 ) ∈ R𝑁×𝐷 , where 𝑁 = |V| is the number of nodes and 𝐷 is the
feature size. An element 𝑒𝑖, 𝑗 = (𝑣𝑖 , 𝑣 𝑗 ) present in E indicates that
there is a connection between nodes 𝑣𝑖 and 𝑣 𝑗 , meaning node 𝑣 𝑗 is
contained in the set of 𝑖’s neighbors,N𝑖 , and 𝑣𝑖 is contained inN𝑗 . In
an undirected graph, the edge element 𝑒𝑖, 𝑗 corresponds to 𝑒 𝑗,𝑖 . The
connections in a graph can be represented using an 𝑁 ×𝑁 adjacency
matrix, where each element 𝐴𝑖, 𝑗 represents an edge between nodes
𝑖 and 𝑗 .

2.2 Graph Neural Networks (GNNs)
Within a GNN, graph data is transformed over several layers to
perform classification and/or regression tasks on the full graph
or individual nodes/edges. GNNs can be represented through the
Message Passing Mechanism [Gilmer et al. 2017], which generalizes
the node update law as follows.

x𝑙+1𝑖 = 𝛾 (x𝑙𝑖 ,A 𝑗∈N(𝑖 ) (𝜙 (x𝑙𝑖 , x𝑗 , 𝑒
𝑙
𝑖, 𝑗 ))) (1)

It can be seen that in the general case, each node aggregates incom-
ingmessages represented as an arbitrary function𝜙 , which is equiva-
lent to aggregating neighboring embeddings when𝜙 = x𝑙

𝑗
. Messages

are aggregated through an arbitrary permutation-invariant aggrega-
tion functionA 𝑗∈N(𝑖 ) over the neighborhood of node 𝑖 , and and an
arbitrary transformation function 𝛾 (x𝑙

𝑖
,m𝑙

𝑖
), where m𝑙

𝑖
is the result

of aggregation (i.e. m𝑖 = A 𝑗∈N(𝑖 )𝜙 (x𝑙𝑖 , x
𝑙
𝑗
, 𝑒𝑙
𝑖, 𝑗
)).

2.2.1 Graph Convolutional Networks (GCN). GCNs emerged as a
solution analogous to Convolutional Neural Networks in the com-
puter vision domain [Kipf and Welling 2016]. The element-wise
node update law for a single GCN layer is shown in Equation 2.

x𝑙+1𝑖 =𝑊
©­­«

∑︁
𝑗∈N𝑖∪{𝑖 }

𝑒 𝑗,𝑖√︃
𝑑 𝑗𝑑𝑖

x𝑙𝑗
ª®®¬ (2)

The normalization factors are given by 𝑑𝑖 = 1 +∑𝑗∈N(𝑖 ) 𝑒 𝑗,𝑖 . It
can be seen thatA is taken as the summationA =

∑
𝑗∈N𝑖

𝜙 (x𝑗 , 𝑒𝑖, 𝑗 ),
with 𝛾 (x𝑖 ,m𝑖 ) =𝑊m𝑖 .

2.2.2 Graph Isomorphism Networks (GIN). GIN was proposed as
a model that can provably generate distinct feature updates for
two graphs that can be shown to be non-isomorphic through the
Weisfeiler-Lehman test [Leman 2018], thus maximizing its repre-
sentational capacity [Xu et al. 2018]. The update law is given by the
following, where 𝜖 is a small scalar for numerical stability.

x𝑙+1𝑖 = 𝑀𝐿𝑃
©­«(1 + 𝜖) · x𝑙𝑖 +

∑︁
𝑗∈N(𝑖 )

x𝑙𝑗
ª®¬ (3)

The same aggregation A is used as in GCN. In contrast to GCN,
GIN does not make use of normalization factors in aggregation (i.e.
𝜙 = x𝑗 ), and a residual connection is added after aggregation, which
is equivalent to a self-connection in the graph’s adjacency matrix.
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Table 2. Example state of the Node Scoreboard at runtime, with nodeslots are found in various states. The adjacency list and updated feature pointers indicate
the memory address from which to fetch the list of neighbouring node IDs and write updated feature embeddings, respectively. The precision field dictates
which arithmetic cores are allocated at runtime.

Slot Node ID Precision State Neighbors Adjacency List Pointer Updated Feature Pointer

0 267 float Transformation 32 0x3BC90188 0x4FE8B774
1 268 float Aggregation 8 0xCAF5C03F 0xE672109F
. . . . . . . . . . . . . . . . . . . . .
63 330 int4 Prefetch 1 0x78E26A27 0xA4D89ED9

2.2.3 GraphSAGE. GraphSAGEwas proposed as an inductive frame-
work to generate feature embeddings with high representational
capacity for unseen nodes and/or sub-graphs [Hamilton et al. 2017].

x𝑙+1𝑖 =𝑊1x𝑖 +𝑊2 ·
(
mean
𝑗∈N(𝑖 )

𝜎 (𝑊3x𝑙𝑗 + b)
)

(4)

It can be seen that the message passing function 𝜙 is taken as
a fully-connected layer with activation 𝜎 over the neighbouring
embeddings x𝑗 , A is taken as the mean, and the transformation
𝛾 (x𝑖 ,m𝑖 ) =𝑊1x𝑖 +𝑊2m𝑖 where𝑊1,𝑊2 are linear projection matri-
ces. The projection parameterized by𝑊1 can be seen as a scaled
residual connection.

2.3 Neural NetworkQuantization
Quantization has been widely explored as a method for reducing
model complexity and computational latency in neural networks.
Quantization-Aware Training (QAT) enables minimizing accuracy
loss at low-precision representations by quantizing activations in the
forward pass, making use of the Straight-Through Estimator (STE) in
the backwards pass to estimate the non-differentiable quantization
gradients. In general, activations are quantized following Equation
5, where 𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥 form the chosen range of representable values,
𝑠 is the scaling factor to place 𝑥 into the required range, 𝑧 is the
zero-point (floating point equivalent of the value 0 in the quantized
space) and the brackets represent the rounding operation.

𝑥𝑞 = min(𝑞𝑚𝑎𝑥 ,max(𝑞𝑚𝑖𝑛,

⌊𝑥
𝑠
+ 𝑧

⌉
)) (5)

The min and max functions are in place to show that any values
beyond the specified range assume the fixed-point value at the limit.
Following this, activation can be de-quantized by 𝑥 = (𝑥𝑞 − 𝑧)𝑠 ,
where 𝑥 is an approximation of the original floating-point value.

2.3.1 Quantization-Aware Training for GraphNeural Networks. Degree-
Quant, proposed by Tailor et al., was one of the first approaches
applying Quantization-Aware Training to Graph Neural Networks
[Tailor et al. 2020]. Firstly, Tailor et al. suggest that the aggregation
phase of GNN inference is the predominant source of quantization
error. This effect is observed more heavily in nodes with higher
in-degrees, which can be intuitively understood since the absolute
magnitude of aggregation grows with the number of neighbors. The
growth in expected aggregation for high-degree nodes affects the
𝑞𝑚𝑎𝑥 and 𝑞𝑚𝑖𝑛 values, reducing the quantization resolution due to
these outliers in the distribution of aggregation results.
The authors of Degree-Quant address the issue of quantization

error by stochastically applying a protection mask at each layer

Aggregation Engine
(AGE)

Transformation Engine
(FTE)

Node Instruction
Decoder (NID)

...

Aggregation Buffer

Nodeslot 0

Nodeslot 63

Weight Bank

...

Feature Bank

Prefetcher

...

Instruction
Prefetcher

AXI-L

Host CPU

32 High-Bandwidth
Memory (HBM)

DRAM C0

Fig. 1. AMPLE Top Level Diagram. Packets propagate through dimension-
order routing in the Aggregation Engine’s Network-on-Chip (shown in
green), and are driven diagonally into the Transformation Engine’s systolic
array (shown in red). Dashed lines represent control flow interfaces, while
solid lines represent data flow between units. Node embeddings are fetched
through HBM, while instructions are stored in DRAM.

following the Bernoulli distribution [Tailor et al. 2020]. Protected
nodes operate in floating-point, while non-protected nodes operate
in fixed-point. A node’s probability of protection is a function of its
degree, interpolated within a parametrizable range [𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 ],
where the graph nodes with minimum/maximum neighbor counts
are assigned the limit probabilities.

3 Architecture
As shown in Figure 1, AMPLE is composed of the following func-
tional units, with their respective functions.

• Node Instruction Decoder (NID): communication with the
host device and driving other functional units to schedule
work onto the accelerator.
• Prefetcher: fetching and storing layer weights and neigh-
bouring feature embeddings into local memories (the Weight
Bank and Feature Bank, respectively).
• AggregationEngine (AGE): performing permutation-invariant
aggregation functions over all neighbours of a node through
a Network-on-Chip architecture.
• Aggregation Buffer (ABF): storage element containing ag-
gregated feature embeddings generated by the AGE.
• Feature Transformation Engine (FTE): computing the
updated feature embeddings for each node by performing a
matrix multiplication between weights in the Weight Bank
and aggregation results in the Aggregation Buffer.
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3.1 Event-Driven Programming through the Node
Instruction Decoder

Communication between AMPLE and the host is handled by the
Node Instruction Decoder (NID), which is a memory-mapped regis-
ter bank comprised of a configurable number of nodeslots. As shown
in Table 2, each nodeslot contains the information required to per-
form a node’s aggregation and transformation steps, and a state ma-
chine is maintained indicating each node’s state. Algorithm 1 shows
how work can be offloaded by the host, which runs concurrently
with the accelerator. First, the NID is programmed with a number
of global and layer-wise parameters, including node/feature counts
and aggregation functions. Subsequently, the host programs the
nodeslots and updates values in themask𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑛𝑜𝑑𝑒𝑠𝑙𝑜𝑡𝑠 ∈ {0, 1}𝑛
where𝑛 is the number of nodeslots.While a node is programmed, the
accelerator performs aggregation and transformation over previously-
programmed nodes. The𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑛𝑜𝑑𝑒𝑠𝑙𝑜𝑡𝑠 mask is then deasserted
independently by the accelerator when the computation is finished.
Thus, the accelerator supports a node-wise, event-driven computa-
tion paradigm. Note that ′1 and ′0 indicate a mask full of ones and
zeros, respectively.

Algorithm 1 Host programming pseudocode
Require: global parameters P, layers L, nodesV
nid_register_bank.global_parameters← P
available_nodeslots← ’1
for layer in L do

nid_register_bank.layer_config← layer
layer.prefetch_layer_weights()
whileV ≠ ∅ do

if available_nodeslots != ’0 then
chosen_nodeslot← choose(available_nodeslots)
chosen_nodeslot.programming←V .pop_head()
available_nodeslots [chosen_nodeslot]← 0

end if
end while

end for

After a nodeslot is programmed, theNID then drives the Prefetcher,
AGE and FTE as detailed in Table 3 to perform the computation,
and updates the node’s internal state machine after each functional
step. No further intervention is required from the host, and an in-
terrupt is sent after step 7 to indicate the nodeslot can be reused.
It should be noted that the order in which nodes are programmed
within the nodeslots does not imply any priority or time correlation.
Typical graph datasets often display high variance in execution time
per node, depending on neighbour count and numerical precision.
Whenever a nodeslot finishes its computation, it can be immediately
reprogrammed by the host with the next node. This event-driven
control flow requires the host to run concurrently with the acceler-
ator to monitor its state and drive further work when resources are
available. Within the NID, nodes running concurrently are serviced
with round-robin arbitration to grant access to shared resources
within the Aggregation and Transformation Engines.

Table 3. After nodeslot programming, the NID drives the other units in the
accelerator in the sequence shown to perform aggregation and transforma-
tion.

From To Dataflow request

1 NID Prefetcher Fetch node’s adjacency list and
neighbouring feature embeddings

2 NID AGE Aggregate neighbouring features
3 AGE ABF Store aggregation results into the buffer
4 NID FTE Multiply aggregation results with layer

weights to compute updated features
5 FTE Prefetcher Request layer weights stored in

the Weight Bank.
6 FTE DRAM Store updated features in off-chip

memory after transformation is complete.
7 FTE NID Response signalling transformation is

is complete, triggering the nodeslot to
be made available for the next node.

3.2 Mixed-precision Arithmetic
Computing units within the AGE and FTE are locally homogeneous,
meaning each processing element supports a single numerical pre-
cision. Within the Aggregation Engine, these are arranged in a
Network-on-Chip (NoC) architecture comprising a heterogeneous
grid of processing elements, where the ratio of PEs allocated to
each precision can be configured at compile time according to the
application requirements. Each PE is coupled to a router responsible
for transferring packets over the network. Each packet is comprised
of a head flit carrying routing payloads, an arbitrary number of
body flits carrying data, and a tail flit. Since there is no requirement
for communication between PEs of different precisions, these are
placed within isolated sub-networks as shown in Figure 2, which
acts to reduce packet congestion.
As discussed in Section 1, static pipelining through the double

buffering mechanism leads to pipeline gaps when computing over
graphs with high variance in node degree, since low-degree nodes
must wait for high-degree nodes to release resources. This is alle-
viated in the AGE by dynamically allocating processing elements
within each aggregation sub-network according to a node’s feature
count and precision. As such, nodeslots are allocated resources in-
dependently of any other ongoing workload, and these resources
can be immediately reused upon completion, thus forming an event-
driven programming model.

3.3 Large Graph Processing
Inference over large graphs is enabled by the Feature Bank in the
Prefetcher, which contains a storage element named “Fetch Tag"
for each nodeslot in the NID. A group containing a parametrizable
number of Fetch Tags is coupled to each HBM bank on the Alveo
U280 card, meaning up to 32 Fetch Tags can access memory re-
sources concurrently, alleviating the inherent memory boundedness
associated with sparse graph data. Within each Fetch Tag group,
access to the HBM bank is granted using round robin arbitration.
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Fig. 2. Microarchitecture of AGE configured with three supported precisions. NID requests drive the Aggregation Managers (AGMs), which receive fetched
embeddings from the Feature Bank (See Figure 1). These are then transferred to the Aggregation Cores (AGCs) through the network. Aggregation results are
then buffered by the Buffering Managers (BMs).

Round-Robin Arbiter
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Fetch Tag 0

AXI Read Master

Aggregation
Manager 0

Feature Bank

REQ
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...

REQ

Fetch Tag 63

REQ

MessagesAddresses

Aggregation
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Fig. 3. Fetch Tags in the Feature Bank make concurrent memory access
requests in a two-stage process; First, the list of neighbouring node IDs is
stored in the Address Queue, and these are then used as pointers for the
neighbouring feature embeddings, which are stored in the Message Queue.

The Feature Bank supports the large graph use case via its par-
tial response mechanism. For nodes with degree higher than
the Fetch Tag capacity, the Fetch Tag fills the Message Queue and
directly unblocks the AGE to begin the aggregation process. Once
aggregation begins, the Fetch Tag is re-enabled and continues to
fetch the remaining neighbours, hiding the memory access latency.
This mechanism leads to lower storage requirement per nodeslot,
allowing a higher number of Fetch Tags in the Feature Bank, i.e.
deeper node parallelism.

4 Experimental Results
Three foundational GNN models were deployed for evaluating the
accelerator, with varied architectures, as shown in Table 4. See
Section 2 for each model’s update laws.

Furthermore, 6 graph datasets were chosen, the first three being
small citation networks, and the last three being larger social media
graphs. Table 5 shows the node count and mean node degree for
each evaluated dataset - the latter acts as an indicator of graph
sparsity, with an inverse relationship between sparsity and mean
degree.

Table 4. GNN models used for benchmarking the accelerator. A residual
connection denotes the addition of the node’s original embedding after the
aggregation or transformation steps.

Model Aggregation Residual Normalization

GCN sum ✗ aggregation
GIN sum aggregation ✗

GraphSAGE mean transformation transformation

Table 5. Datasets used for benchmarking. DQ ratio shows the ratio of nodes
mapped to float precision by the DegreeQuant algorithm, with the rest
running in int8.

Name Nodes Mean Degree Features DQ Ratio

CR Cora 2,708 3.9 1,433 2.1 %
CS CiteSeer 3,327 2.7 3,703 2.7 %
PB PubMed 19,717 4.5 500 2.9 %
FL Flickr 89,250 10.0 500 0.2 %
RD Reddit 232,965 99.6 602 2.7 %
YL Yelp 716,847 19.5 300 0.4 %

4.1 Mixed-Precision Arithmetic
The DegreeQuant algorithm was used to assign the precision for
each node in the graph datasets, by stochastically protecting nodes
according to their degree (see Section 2). As shown in Table 5, the
ratio of protected nodes is below 3% for all datasets, suggesting
a similar ratio of resources on the accelerator should be allocated
to float. Configuration parameters were then chosen as follows;
given two node groups, for float and int8 nodes, a resource bud-
get 𝑅𝑚𝑎𝑥,𝑟

𝑝 (where 𝑝 ∈ [float, int8] is the numerical format and
𝑟 ∈ [LUT, FF, BRAM, DSP] is the resource type) is allocated to
each group using the ratio obtained from DegreeQuant. A single-
arithmetic variant was synthesized for float and int8, and the re-
source utilization per nodeslot 𝐶𝑟

𝑝 was estimated for each precision
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Fig. 4. Inference speedup compared to Intel Xeon CPU baseline obtained on the RTX A6000 GPU and AMPLE simulation. The GPU shows an average speedup
of 29.8×, 37.8× and 26.7× across all datasets for GCN, GIN and GraphSAGE, respectively. Equivalent speedups on AMPLE were 361.3×, 285.8× and 81.7×.
and resource type. Finally, the number of nodeslots 𝑁𝑝 for each
precision is determined as shown in equation 6, where the brackets
denote rounding up to the nearest integer.

𝑁𝑝 =

⌈
min
𝑟

𝑅
𝑚𝑎𝑥,𝑟
𝑝

𝐶𝑟𝑡
𝑝

⌉
(6)

It was expected that at lower ratios of protected nodes, resources
can be distributed across a higher number of nodeslots, due to the
lower resource usage of fixed-point cores. In fact, it was found that
allocating a single nodeslot to floating-point is normally enough to
meet the precision requirement for task accuracy while maximising
hardware node parallelism.

4.2 Performance Analysis
Each model was first benchmarked on the Intel Xeon CPU and RTX
A6000 GPU across all datasets, with randomly initialized node fea-
tures and layer weights. In each case, the mean latency was obtained
over 100 trials to account for runtime jitter due to non-deterministic
processes. The GPU cache was emptied prior to each prediction
step such that latency readings include off-chip memory access for
features and weights. GPU warm-up time was not included, mean-
ing inference times are taken after driver initialization is complete.
Finally, inference latency on AGILE was obtained from Modelsim
19.2 simulation results at a frequency of 200MHz, obtained for the
Alveo U280 card using the Vivado 23.1 toolflow. As shown in Figure
4, AMPLE led to an improvement in mean inference time compared
to the CPU/GPU baselines across all models. Table 6 shows the
obtained values for latency and node throughput for GCN.

5 Conclusion
This work presented AMPLE, an FPGA accelerator for GNN infer-
ence over large graphs. An event-driven programming flow was
introduced, coupled with a dynamic resource allocation mechanism
through on-chip network communication, overcoming the perfor-
mance bottleneck associated with node batching in graphs with
non-uniform distribution of node degrees. Using a node-centric
data prefetcher, we alleviate the requirement for on-chip storage of
weights and activations, enabling GNN acceleration over social me-
dia graph datasets. These factors led to an average speedup of 243×
and 7.2× compared to CPU and GPU baselines. Finally, we provide
the first platform to accelerate graphs quantized at node granular-
ity, demonstrating an optimal resource mapping to maximise node
parallelism at a low cost to model accuracy.

Table 6. Inference time for evaluated datasets using a single-layer GCN model. Mean latency is reported over 100 iterations.

CPU (Intel Xeon) GPU (RTX A6000) AMPLE @200MHz

Mean Throughput Mean Throughput Mean Throughput Latency Latency
Latency [ms] [nodes/ms] Latency [ms] [nodes/ms] Latency [ms] [nodes/ms] Gain (CPU) Gain (GPU)

Cora 244.4 11.1 7.2 376.3 0.246 11,022.0 994.8× 29.3×
CiteSeer 244.3 13.6 10.1 330.0 0.294 11,318.6 831.2× 34.3×
PubMed 362.4 54.4 4.8 4,099.5 1.617 12,193.2 224.1× 3.0×
Flickr 475.4 187.8 14.5 6,146.2 7.227 12,350.0 65.8× 2.0×
Reddit 953.3 244.4 171.0 1,362.0 24.6 9,463.6 38.7× 6.9×
Yelp 760.8 942.2 110.9 6461.6 57.5 12,471.7 13.2× 1.9×

Average 506.8 242.2 53.1 3,129.3 15.2 11,469.9 361.1× 12.9×
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