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ABSTRACT
This study proposes a hybrid task scheduling framework to optimize
neural network inference for skin lesion classification in resource-
constrained environments. The framework integrates Earliest Dead-
line First scheduling with Dynamic Voltage and Frequency Scaling
to balance real-time performance and energy efficiency. By dynam-
ically adjusting task execution priorities and processor frequency,
the proposed method reduces missed deadlines, optimizes resource
utilization, and minimizes power consumption. The approach effec-
tively adapts to varying workloads, ensuring that AI-driven skin
lesions medical imaging tasks meet real-time constraints without
excessive computational overhead. This hybrid scheduling method
can be extended to other healthcare applications, including real-
time anomaly detection in medical environments.
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1 INTRODUCTION
The rapid growth of artificial intelligence (AI) and deep learning
has revolutionized several domains, including healthcare, where
AI-driven models have shown significant potential for tasks such
as medical image analysis and disease classification [6]. As these
models become more complex, their computational requirements
increase, leading to the need for efficient resource management,
particularly in embedded and real-time systems [9]. The challenge
lies in the ability to balance model performance, execution dead-
lines, and resource constraints such as energy consumption and
computational capacity.
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One of the key strategies for optimizing AI workloads in con-
strained environments is task scheduling [6]. This is a process in
which the execution of individual computational tasks is carefully
managed to meet performance criteria such as real-time deadlines
and efficient resource usage [9]. In the context of neural network
inference, tasks such as layer computations, batch processing, or
preprocessing steps can be scheduled to optimize the overall perfor-
mance and efficiency of the system. Effective task scheduling can
prevent resource bottlenecks, reduce energy consumption, and en-
sure timely completion of tasks [11]. This is useful when deployed
on systems with limited resources, such as embedded platforms.

The proposed framework can be designed to extend across a
range of medical imaging applications, enabling the detection of
various diseases such as diabetic retinopathy, cervical cancer, and
skin lesions. Each use case highlights the importance of efficient
inference mechanisms in providing accurate and timely diagnoses
even in environments where computational resources are limited.

In addition to medical imaging of skin lesions, such an approach
can be involved in real-time anomaly detection in IoT-enabled
healthcare systems. A timely identification of irregularities, such
as patient’s vital signs or sensor anomalies, can significantly im-
prove patient outcomes. In such scenarios, the need for low-latency,
energy-efficient processing is crucial. The hybrid scheduling frame-
work ensures that computationally expensive tasks are offloaded
to cloud systems while critical tasks are locally processed.

Through a detailed analysis of these scenarios, our investigation
aims to emphasize a solution to the challenges faced in healthcare
systems, offering a pathway for AI-driven medical imaging and
diagnostic tools to reach production-level implementation.

The main contributions of this work are: (1) Task decomposition.
Neural network inference is broken into discrete tasks, such as batch
processing and layer-wise computations, which are scheduled and
executed under various algorithms. (2) A detailed comparison of
the five scheduling algorithms, where we highlight their impact on
performance metrics in the context of AI workloads (skin lesions
classification with ResNet-50) with real-time constraints. (3) The
integration of Dynamic Voltage and Frequency Scaling (DVFS) and
a hybrid early deadline first (EDF) approach that demonstrates the
trade-offs between performance and energy efficiency in AI-driven
healthcare.

2 BACKGROUND INFORMATION
In this section, we will discuss the theoretical notions correlated to
task scheduling principles.

1

269

https://orcid.org/0009-0000-5126-6480
https://orcid.org/0000-0002-3143-8908
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

EuroMLSys ’25, March 31, 2025, Rotterdam, The Netherlands NA

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2.1 Task Scheduling in Real-Time Systems
Task scheduling is a fundamental concept in computer science,
where the objective is to allocate resources to tasks in such a way
that system performance is optimized. In real-time systems, sched-
uling algorithms must ensure that tasks are executed within their
specified deadlines to maintain system reliability and efficiency
[10]. We can classify scheduling algorithms into two major types:
static and dynamic.

Static scheduling assigns tasks with fixed priorities prior to ex-
ecution, often using Rate Monotonic Scheduling (RMS) [7]. RMS
assigns priorities based on the periodicity of tasks, where tasks
with shorter periods (more frequent executions) receive a higher
priority. Dynamic scheduling, on the other hand, adjusts task prior-
ities at runtime [1]. EDF[5] is a commonly used dynamic scheduling
algorithm in which tasks with the closest deadlines are given the
highest priority.

In both approaches, the deadline miss rate (the percentage of
tasks that fail to meet their deadlines) is a key performance metric,
along with the task completion time, which represents the total
time taken to execute all tasks. For resource-constrained systems,
such as embedded or mobile platforms, managing task execution
across multiple resources (CPU and GPU) adds another layer of
complexity.

2.2 Medical AI Applications
Neural networks have become a cornerstone of AI applications
in healthcare, particularly for tasks such as image classification,
disease prediction, and automated diagnosis. Convolutional Neural
Networks are widely used for image-based tasks, while Fully Con-
nected Neural Networks (FCNN) are often applied to structured data
[15]. In medical imaging, neural networks are capable of identifying
complex patterns in X-rays, MRIs, and dermoscopic images, often
surpassing traditional statistical models and even human experts
in certain diagnostic tasks. In [15], an FCNN is used to classify the
dermoscopic images, distinguishing between melanocytic (benign)
and non-melanocytic (malignant) lesions. Accurate and timely clas-
sification is critical in healthcare, where diagnostic delays can have
severe consequences for patient outcomes [12]. The dataset used
includes structured features like age, sex, and lesion location, in
addition to the image data, to improve the accuracy of the model.

2.3 AI Workloads for Skin Lesions Classification
The deployment of artificial intelligence models for the detection
of skin lesions in resource-constrained environments, such as pow-
ered medical devices, presents unique challenges. Neural network
inference, which involves running the model on patient data, can be
resource intensive, especially when working with high-resolution
dermoscopic images. Performance optimization for these workloads
requires efficient task scheduling and resource management [13].

Neural network inference can be broken down into discrete
tasks, such as processing individual layers of the model or handling
batches of images. These tasks can be scheduled on the available
computing resources (CPU, GPU) to ensure timely execution. In
medical settings, real-time performance is essential. Delays in the
processing of patient data can lead to missed diagnoses or delayed
treatments. Thus, task scheduling algorithms must ensure that

the deadline-miss rate is minimized and task completion time is
optimized, even under resource constraints.

2.4 Selected Algorithms from Related Works
Earliest Deadline First Scheduling. EDF Scheduling is a dynamic
scheduling algorithm that prioritizes tasks based on their deadlines,
ensuring those with the earliest deadlines execute first [2]. This
makes it highly effective for real-time workloads where tasks, such
as image batch processing in neural network inference, must be
completed within strict time constraints [3].

However, EDF does not optimize for energy consumption [14].
In energy-constrained environments like mobile health devices,
executing tasks at maximum processor frequency may lead to in-
efficiencies. To address this, EDF is often combined with power
management techniques such as DVFS to balance performance and
energy efficiency.

Dynamic Voltage and Frequency Scaling. DVFS dynamically adjusts
a processor’s voltage and frequency based on workload demands,
reducing power consumption at the cost of increased execution
time [4]. In resource-limited medical AI systems, this trade-off is
crucial for prolonging device operation. For instance, in skin le-
sion detection, lowering the frequency during low computational
demand conserves energy [8]. However, under high load, exces-
sive frequency reduction can delay diagnoses by causing missed
deadlines. A hybrid approach integrating EDF with DVFS helps miti-
gate these issues, ensuring real-time performance while optimizing
energy use.

3 THE PROPOSED APPROACH
In modern real-time systems that involve computationally intensive
workloads such as neural network inference for medical applica-
tions, it is critical to balance real-time performance with energy
efficiency. Traditional real-time scheduling algorithms, like EDF, fo-
cus primarily onmeeting task deadlines without considering energy
consumption. On the other hand, power management techniques
such as Dynamic Voltage and Frequency Scaling optimize energy
efficiency at the cost of longer task execution times. In this context,
we propose a Hybrid EDF + DVFS approach that aims to integrate
the benefits of both EDF and DVFS to achieve a balance between
meeting real-time deadlines and minimizing energy consumption.
The Hybrid EDF + DVFS approach aims to integrate the strengths of
both EDF and DVFS. By combining these two strategies, the system
can prioritize tasks based on deadlines using EDF scheduling. It can
also dynamically adjust the processor frequency to balance energy
consumption with performance, using DVFS.

In this approach, the system continually monitors the task dead-
lines and the utilization of the processor. If the system detects that
tasks are ahead of schedule (they can be completed well before their
deadlines), it lowers the processor frequency to save energy. Con-
versely, if the system detects that tasks are at risk of missing their
deadlines, it increases the processor frequency to ensure timely
completion.

Tasks are sorted by their deadlines, with the nearest deadline
assigned the highest priority. This ensures that tasks critical to
real-time performance are handled first. As tasks are executed, the
system monitors how close the tasks are to their deadlines. If tasks
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are ahead of schedule, the processor frequency is reduced (using
DVFS) to save energy. If tasks are behind schedule, the processor
frequency is increased to ensure that deadlines are met. The system
continuously balances the trade-off between energy savings and per-
formance. When tasks have flexible deadlines or when the system
is under low computational load, more aggressive energy-saving
measures (lower frequencies) can be employed. During periods of
high load or tight deadlines, the system prioritizes performance by
increasing the processor frequency.

3.1 Skin Cancer Detection AI Workload
In AI workload for skin cancer detection, neural network inference
tasks are computationally demanding. These tasks include process-
ing dermoscopic images, extracting features, and classifying lesions
as melanocytic or non-melanocytic.

Each batch of images that will be processed by the neural net-
work is treated as a task. The Hybrid EDF + DVFS scheduler assigns
deadlines based on the size of the batch and the required real-time
feedback (diagnosing a lesion within a few seconds). In some sce-
narios, each layer of the neural network can be treated as a task.
The Hybrid EDF + DVFS scheduler dynamically adjusts the processor
frequency for each layer’s computation based on the task’s deadline
and the system’s current energy state.

Consider a system that processes 10 batches of dermoscopic
images using a neural network. The deadlines for processing each
batch are set based on the required diagnostic time for each patient.
The Hybrid EDF + DVFS scheduler starts by assigning deadlines
and frequencies. If the system detects that some batches are being
processed quickly (ahead of their deadlines), it reduces the processor
frequency for subsequent batches, saving energy. If the system
detects that certain batches are taking too long (close to missing
their deadlines), it increases the processor frequency to ensure that
the deadlines are met.

3.2 Advantages of Hybrid EDF + DVFS
By dynamically scaling the processor frequency, the system can
achieve significant energy savings without sacrificing performance.
This is especially important for mobile health applications, where
energy efficiency is a priority. The EDF component of the hybrid
algorithm ensures that tasks are scheduled based on their deadlines,
minimizing the risk ofmissing critical deadlines in real-timemedical
applications.

The hybrid approach is adaptable to varying workloads. During
periods of low computational demand, the system conserves en-
ergy by reducing frequency. During peak demand, the frequency is
increased to meet deadlines.

3.3 Implementation Outline
The implementation of the Hybrid EDF + DVFS Task Scheduling
Framework begins with defining the class Task, which models each
computational task, including its execution time, deadline, and
whether it is an AI inference task. The edf_scheduler function im-
plements the EDF scheduling algorithm, prioritizing tasks based on
their deadlines to ensure real-time execution. AI-specific tasks, such
as neural network inference, are handled by the run_inference

function, which logs any missed deadlines, emphasizing the impor-
tance of timely execution.

For neural network integration, a TensorFlow-based deep learn-
ing model is trained on a dataset of dermoscopic images to classify
skin lesions. The trained model is converted into TensorFlow Lite
for efficient deployment in resource-constrained environments. The
load_model function loads this optimized neural network, while
the predict function processes image batches, ensuring that AI
inference remains both accurate and computationally feasible.

To enhance efficiency, the Hybrid Scheduler extends the EDF
scheduling algorithm by incorporating model pruning and DVFS.
The prune_model function reduces the size and complexity of the
neural network, sacrificing a minor degree of accuracy in favor of
computational efficiency. The assign_resources function dynami-
cally allocates tasks to either the CPU- or GPU-based on system load,
optimizing resource utilization. The function adjust_frequency
employs DVFS to dynamically regulate processor frequency, lower-
ing it when tasks are ahead of schedule to save energy, and increas-
ing it when deadlines are at risk of being missed.

A reinforcement learning (RL) scheduler further improves the
framework’s adaptability. The RLScheduler (automated HPC job
scheduler) class implements Q-Learning to dynamically adjust
scheduling decisions in real-time. The update_q_table function
enables the system to learn optimal scheduling actions based on
previous performance, while calculate_reward balances task exe-
cution efficiency and energy savings, ensuring an optimal trade-off
between performance and resource consumption.

To evaluate the effectiveness of the proposed framework, multi-
ple performance metrics are considered, including the deadline miss

Task Queue

Task 1 (D: 10) Task 2 (D: 15) Task 3 (D: 20)

EDF
Scheduler

Dynamic Voltage and Frequency Scaling

CPU GPU

Neural Network Inference

Skin Lesion Classification

Figure 1: Hybrid EDF + DVFS task scheduling for classifying
lesions into melanocytic and non-melanocytic (ResNet-50).
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Figure 2: Energy-efficient scheduling: balancing performance
(miss rate) and power consumption across multiple models.

rate, task completion time, energy consumption, accuracy degra-
dation due to pruning, CPU and GPU utilization, and scheduler
overhead.

In relation to Fig. 1, the implementation follows the structured
flow in which tasks enter the system through the task queue and
are managed by the EDF Scheduler, which prioritizes execution
based on deadlines. The DVFS ensures that tasks are executed
efficiently by adjusting processor frequencies, balancing real-time
performance, and energy efficiency. Task execution is distributed
between the CPU and GPU, where AI inference occurs, utilizing
the trained neural network model for lesion classification. The
system continuously monitors scheduling efficiency and adapts to
varying workloads, ensuring timely classification of skin lesions
into melanocytic and non-melanocytic categories.

Matplotlib was used to visualize the performance of the different
scheduling algorithms. These visualizations allow for easy compari-
son of the baseline and global EDF, DVFS, RMS , RL-based schedulers,
and Hybrid EDF + DVFS approaches across different metrics.

4 RESULTS
The proposed Hybrid EDF + DVFS scheduler was evaluated alongside
other scheduling techniques, including Baseline EDF, RMS , Global
EDF, Energy-Aware, and RL Scheduler. Several performance metrics
were collected and analyzed, including deadline miss rate, task com-
pletion time, energy consumption, accuracy degradation, CPU/GPU
utilization (util.), resource contention rate (Res. CR), scheduler over-
head (Sch. OH), and fairness index.

The deadline miss rate measures the percentage of tasks that fail
to complete within their specified deadlines. The Hybrid EDF sched-
uler achieved the lowest deadline miss rate, at 4%, significantly
outperforming the Baseline EDF scheduler, which had a 10% miss
rate. This improvement can be attributed to the dynamic task man-
agement strategies employed in the Hybrid EDF scheduler, which
prunes AI models and adjusts the frequency to meet deadlines.
Other schedulers such as RMS and RL Scheduler demonstrated miss
rates of 12% and 5%, respectively.

Table 1: Comparison of scheduling algorithms (2).

Metric B. EDF RMS G. EDF RL Hybrid

CPU util. (%) 80 75 85 70 78
GPU util. (%) 0 0 0 70 75
Res. CR (%) 25 20 18 12 10
Sch. OH (%) 3 4 5 8 4
Fairness 0.90 0.88 0.93 0.92 0.97

The average task completion time for the Hybrid scheduler was
90 milliseconds, compared to 120 milliseconds for Baseline EDF.
The reduction in task completion time with the Hybrid model is
achieved by optimizing the processing of AI tasks through model
pruning and the dynamic adjustment of task priorities. The RMS and
Global EDF schedulers had completion times of 130 milliseconds and
110 milliseconds, respectively. These results indicate that Hybrid
model efficiently accelerates task execution without compromising
deadline adherence.

One of the primary objectives of the Hybrid EDF + DVFS scheduler
is to reduce energy consumption while maintaining performance.
The energy consumption of the Hybrid scheduler was 1,000 joules,
representing a 33% reduction compared to the 1,500 joules con-
sumed by the Baseline EDF scheduler. This reduction is achieved
through the use of DVFS, which dynamically adjusts the proces-
sor frequency based on system load. In contrast, the energy-aware
scheduler and RL scheduler consumed 1,100 joules and 1,200 joules,
respectively, demonstrating the effectiveness of Hybrid EDF in bal-
ancing energy efficiency and performance.

The accuracy degradation metric quantifies the reduction in AI
model accuracy due to pruning. Hybrid model incurred a 4% ac-
curacy degradation, with the pruned AI models achieving slightly
lower classification accuracy compared to their full-sized counter-
parts. This trade-off was necessary to meet real-time deadlines in
scenarios where execution time was critical. Baseline EDF, RMS , and
Global EDF incurred no accuracy degradation, as these schedulers
do not implement model pruning. The RL Scheduler exhibited a
3% accuracy degradation, similar to Hybrid EDF + DVFS as both
schedulers incorporate AI-aware adjustments

CPU and GPU utilization were measured to evaluate how ef-
fectively the schedulers utilized available computational resources.
Hybrid EDF demonstrated a 78% CPU utilization and 75% GPU uti-
lization, reflecting efficient use of both processing units. Baseline
EDF, by contrast, primarily relied on CPU resources, with 80% CPU
utilization but no significant GPU usage. Energy-aware and RL
schedulers showed more balanced resource distribution, with CPU
utilization at 65% and 70%, and GPU utilization at 60% and 70%,
respectively. The effective use of GPU resources in Hybrid EDF and
RL Scheduler highlights their suitability for AI-intensive workloads
(Table 1).

The resource contention rate, which measures the percentage of
tasks experiencing competition for CPU or GPU resources, was 20%
for Hybrid EDF + DVFS. This indicates that, in 20% of cases, tasks had
to compete for processing resources, potentially leading to delays.
In comparison, Baseline EDF had a higher contention rate of 25%,
as it lacks the dynamic resource allocation strategies of Hybrid EDF
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Figure 3: Scalability analysis of scheduling models when classifying skin lesions.
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Figure 4: Comparison of miss rates across six models when classifying skin lesions.

Table 2: Energy-performance trade-off for schedulers.

Metric B. EDF G. EDF Energy A. Hybrid

Miss rate (%) 10 8 6 4
Energy cons. (J) 1,500 1,300 1,100 1,000

+DVFSṪhe RL Scheduler showed a contention rate of 12%, reflecting
its more sophisticated decision-making in task scheduling.

The scheduler overhead measures the computational cost of
running the scheduling algorithm itself. Hybrid EDF exhibited a
4% overhead, which indicates that the dynamic scheduling mecha-
nisms, including AI-specific adjustments and DVFS, added only a
modest computational burden. The overhead for Baseline EDF was
3%, while the RL Scheduler had the highest overhead at 8% due to
the complexity of reinforcement learning-based decision-making.

Table 3: Scalability. Deadline miss rate (MR) and task com-
pletion time at different task loads.

Task loads 100 200 300 400 500

Miss rate (%) - hybrid 4 5 7 9 10
Compl. time (ms) - hybrid 85 90 95 100 105

The fairness index, based on Jain’s Fairness Index, was used to
assess how evenly resources were distributed across tasks. Hybrid
EDF achieved a fairness index of 0.97, close to the ideal value of
1.0, indicating fair resource allocation across all tasks. The Baseline
EDF and RMS schedulers had lower fairness indices of 0.90 and 0.88,
respectively, indicating a less equitable distribution of resources.
The RL Scheduler achieved a fairness index of 0.92, reflecting its
ability to manage resource allocation dynamically.
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Table 4: AI workload accuracy degradation across schedulers.

Scheduler B. EDF RL Scheduler Hybrid

Accuracy degr. (%) 0 2 3

Table 5: Mixed-criticality task deadline miss rate.

Scheduler High-critic. MR (%) Low-critic. MR (%)

B. EDF 12 30
G. EDF 8 25
RL 9 22
Hybrid 7 20

Energy-performance trade-off table displays the trade-off be-
tween the deadline miss rate and energy consumption for various
schedulers. Hybrid EDF shows the lowest energy consumption with
the least miss rate (see Table 2).

The trade-off between energy consumption and miss rate across
six scheduling models is illustrated in Fig. 2, with experiment in-
dices on the x-axis, miss rate (%) on the left y-axis, and energy
consumption (Joules) on the right y-axis. Solid lines with markers
represent miss rates, while dashed lines with ‘x’ markers indicate
energy consumption. The models compared include Baseline EDF,
RMS, Global EDF, Energy-Aware, RL Scheduler, and Hybrid EDF. Hy-
brid EDF consistently achieves the lowest miss rate, while Baseline
EDF exhibits the highest, showing its inefficiency in handling sched-
uling tasks. Similarly, Hybrid EDF also consumes the least energy,
whereas Baseline EDF has the highest energy consumption, mak-
ing it less optimal for energy-sensitive environments. Hybrid EDF
emerges as the most efficient model in terms of both energy savings
and performance.

The scalability results table shows how deadline miss rates
and task completion times scale as the task load increases. Hy-
brid EDF demonstrates stable performance as the load increases.
Mixed-criticality task results compare the deadline miss rates for
high-criticality and low-criticality tasks across different schedulers,
highlighting how the Hybrid performs better for high-criticality
tasks (Tables 3 and 5).

The AI workload accuracy degradation compares the accuracy
degradation of the AI workloads due to pruning across different
schedulers, showing that Hybrid EDF sacrifices some accuracy for
better performance (see Table 4).

The scalability performance of six schedulingmodels is presented
in Fig. 3, by analyzing the deadline miss rate and the average task
completion time as the number of tasks increases. The miss rate
percentage is included in Fig. 3a, where Baseline EDF exhibits the
highest miss rate, while Hybrid EDF + DVFS maintains the lowest,
closely followed by the RL Scheduler and Global EDF. On the other
hand, Fig. 3b illustrates the average task completion time, where
Baseline EDF again has the worst performance, while the Hybrid
model demonstrates the best efficiency.

As the task count increases, all models show a rising trend in
both metrics, indicating the impact of system load on scheduling
effectiveness. The Energy-aware and RL-based models achieve a

better balance between deadline adherence and task completion
time than simpler algorithms like Baseline EDF and RMS principles.
The hybrid model consistently outperforms others, proving its
robustness in handling increasing workloads while minimizing
deadline misses and maintaining low task completion times.

Next, Fig. 4 compares the miss rates of six scheduling models
for high-criticality and low-criticality tasks. Fig. 4a presents the
high-criticality miss rate, where Baseline EDF has the highest rate,
followed by Energy-Aware and RMS while Hybrid EDF achieves the
lowest miss rate, demonstrating its reliability in handling critical
tasks. Fig. 4b shows the low-criticality miss rate, where Baseline
EDF again performs the worst, followed closely by RMSwhile Hybrid
EDF + DVFS maintains the lowest miss rate.

Across both categories, Global EDF, RL Scheduler, and Energy-
Aware models achieve a middle-ground balance, offering moderate
improvements over traditional methods. The decreasing trend from
Baseline EDF to Hybrid EDF + DVFS in both plots highlights the
effectiveness of advanced scheduling techniques in improving dead-
line adherence. The hybrid model proves to be the most efficient
approach, as it minimizes the likelihood of missing deadlines, en-
suring better overall performance for both critical and non-critical
tasks.

5 CONCLUSIONS
This study presents a detailed evaluation of various scheduling algo-
rithms, with a particular focus on the proposed Hybrid EDF + DVFS
scheduler. The research explores how real-time task scheduling can
be optimized for performance and energy efficiency, especially in
AI workloads such as neural network inference for medical data.

The results indicate that the Hybrid EDF + DVFS scheduler con-
sistently outperforms traditional approaches like Baseline EDF and
RMS across multiple key performance metrics. The Hybrid sched-
uler achieved the lowest deadline miss rate (4%), reflecting its ability
to prioritize tasks effectively while ensuring critical deadlines are
met. This improvement is largely due to its dynamic task man-
agement capabilities, including model pruning for AI tasks and
adaptive frequency scaling through DVFS. In terms of task comple-
tion time, the Hybrid EDF + DVFS scheduler also outperformed the
other algorithms, completing tasks in an average of 90 ms com-
pared to 120 ms for Baseline EDF. This indicates that Hybrid EDF +
DVFS can accelerate task execution without compromising deadline
adherence, making it a valuable approach for real-time AI applica-
tions such as medical diagnostics. One observed trade-off was the
accuracy degradation of AI models due to pruning (4%).

For further experiments, it is important to integrate multiple
CNN models. Testing multiple models helps determine which ar-
chitecture best fits the hybrid scheduling framework.
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