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Abstract
Large language models (LLMs) have led to ground-breaking
improvements in the capabilities of generative AI (Gen-AI)
applications, leading to their increased adoption, which in
turn is leading to increasing volumes of user requests at LLM
inference deployments. The existing common implementa-
tions of LLM inference engines perform a new prefill every
time there is a prompt departure. We analytically model the
inference system for a fixed batch size with large rate of
prompt arrivals and scheduling prefills after a fixed number
of prompt departures. We characterize the throughput of the
system as number of prompts departing per unit time for
different thresholds. We observe that to maximize through-
put, there exists an optimal threshold on the number of
prompt departures. We verify this observation with vLLM
experiments, and compare the optimal threshold predicted
theoretically to the experimentally observed ones.

CCS Concepts: • Computing methodologies→ Model-
ing and simulation; • Computer systems organization
→ Neural networks.

Keywords: LLM inference systems, prompt completion time,
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1 Introduction
Large language models (LLMs) based on transformer archi-
tectures have led to a significant breakthrough in NLP and
AI systems, as witnessed by the capabilities of applications
such as ChatGPT [17] and agentic LLMs [14]. The close-to-
human performance of LLM systems is made possible by
their high complexity and large size, hence training and de-
ploying them in a resource-efficient manner is critical for
lowering cost and energy consumption. During inferencing,
serving the requests at high throughput and low latency
is key for seamless and compelling user experiences. Thus,
improving the efficiency of LLM inferencing has become an
active area of research, with ongoing development of several
LLM inference optimization mechanisms—both algorithmic
and systems-based [2, 8, 10–12].

One major shortcoming in the LLM optimization space is
the lack of formal analytical approaches to reason about their
performance that can help in choosing the right operating
points. This is not surprising, given their highly complex
and multi-dimensional nature and stochasticity in user re-
quests and arrivals. Most optimization frameworks rely on
extensive benchmarking and interpolating/extrapolating the
benchmarked results via regression or ML approaches [1, 9].
At a high level, LLM inferencing consists of two main

phases, the prefill phase and the decode phase [12, 16]. In
the prefill phase, the input prompt received with a request is
broken down into tokens and embedded into a vector space,
for which Key-Value (KV) vector pairs and finally the first
output token are generated using self-attention mechanism.
The decode phase is iterative, with each iteration generating
the next output token in an auto-regressive manner using
the KV vectors of the input and preceding output tokens.
Hence, the KV vectors generated for the input and output
tokens are stored in a KV cache to avoid recomputing them.
Since KV vectors for a token are independent of the other
tokens, KV computation for an input prompt is paralleliz-
able across the tokens of the prompt, making the prefill
phase compute-intensive. On the other hand, due to its auto-
regressive nature, output token generation is dependent on
the KV vectors of all the preceding tokens and hence is se-
quential. To improve the utilization of the accelerator (GPU)
and the throughput of the decode phase, multiple requests
are concurrently decoded in a batch with all their KV vectors
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held in the KV cache. The number of concurrently decoded
requests is referred to as the batch size of the inferencing
server. Several variants of LLM batching, ranging from static
batching to continuous dynamic batching, have been imple-
mented to improve the overall throughput and per-request
latency of LLM inferencing [2, 15].

In static batching, requests are served in statically grouped
batches, each with a pre-specified number of requests, which
are concurrently processed from the start to finish. Execu-
tion of a new batch commences only after all the requests in
the previous batch complete. Static batching can lead to re-
source under-utilization due to the differences in the number
of input and output tokens of requests and their asynchro-
nous and non-deterministic arrivals. Dynamic, continuous
batching attempts to overcome the shortcoming and improve
system throughput by adding one or more new requests to
a running batch at the end of a decode iteration depend-
ing on memory availability. When a new request is added,
the decode phase is stalled to perform the prefill operations
for it, which can increase the time to completion for the
stalled requests. Thus, dynamic continuous batching offers
a trade-off between throughput and latency by controlling
when and how many new requests are admitted into a batch.
Most inference servers, such as vLLM [8], TGIS [5], and
ORCA [15] support dynamic continuous batching, admit-
ting new requests after each iteration if KV cache memory
permits. Some systems, such as TGIS, allow admitting new
requests to be deferred if any request in the currently ex-
ecuting batch is nearing completion. However, there does
not exist much guidance currently on how to determine the
maximum batch size or when to admit new requests for a
given batch size and desired throughput and latency bounds,
except for the use of benchmarked results. In this paper, we
take a first step to address this gap.

We attempt to maximize the throughput in terms of num-
ber of completed requests by deferring prefills to reduce
stalls in the decode phase. It is easy to see that reducing
decode stalls serves to lower the decode time. However,
contrary to expectation, reducing stalls does not monoton-
ically reduce throughput, but increases throughput up to
a threshold, which we seek to analytically determine. For
this, we model the needed components of an inference sys-
tem, namely batching, KV cache, and the prefill and decode
phases. The duration for which a prefill is deferred is in
terms of the number of prompts that complete, termed the
departure threshold. We show that in a backlogged system
with infinite waiting requests, the decode batch reaches its
maximum configured limit following a renewal process, us-
ing which we derive the optimal departure threshold. We
validate the results via simulations and experiments using
vLLM inference server and NVIDIA A100 GPU.

The main contributions of the work are as follows. We
propose a departure threshold based scheduling algorithm

for switching between the decode and prefill phases. We an-
alytically model the inference system and find an expression
for throughput under the proposed scheduling algorithm for
large prompt arrival rates. We find an analytical approxima-
tion for throughput and find the optimal departure threshold
that maximizes the approximate system throughput. We
characterize a vLLM inference system to obtain the system
parameters for our analytical model, and conduct simula-
tions and experiments that verify our analytical insights.

2 System model
Wemodel an inference system that can generate a maximum
of 𝑁 tokens in parallel. There are three main components
of the system that we model: (i) Characteristics of requests
or prompts arriving into the system, (ii) KV cache where
key-value pairs for requests are prefilled for output token
generation, and (iii) prefill and decode times that govern the
evolution of KV cache occupancy.

2.1 Requests
Each request arrives with a random number of input tokens
and a random requirement of output tokens. For analyti-
cal tractability, we assume that for each request 𝑛 ∈ N, the
number of input tokens 𝐼𝑛 is a constant 𝑑0 and the required
number of output tokens 𝐽𝑛 is independent and geometri-
cally distributed with success probability 𝛼 . For simplicity,
we consider a system with a large arrival rate of prompts
such that the system always has an arbitrarily large number
of prompts. This implies that there are always sufficient re-
quests to completely fill the KV cache. We plan to relax the
assumptions in the future by considering a realistic arrival
process and token length distributions.

2.2 KV cache
We assume that the size of KV cache is fixed at 2𝐶𝑑1𝑑2, i.e.,
it can store at maximum 𝐶 key-value pairs corresponding
to 𝐶 prompts at any given time, where 𝑑1 is the maximum
sequence length allowed for each prompt and 𝑑2 is the model
dimension. Maximum allowed sequence length constrains
the sum of input and output tokens to be 𝐼𝑛+ 𝐽𝑛 ⩽ 𝑑1 for each
prompt 𝑛. We assume that 𝑑1 is sufficiently large such that
𝑃 {𝐽𝑛 > 𝑑1 − 𝑑0} = (1−𝛼)𝑑1−𝑑0 is negligibly small. That is, for
all practical purposes we can assume an infinitely supported
geometric distribution for the number of output tokens. We
denote the number of prompts in KV cache at the end of
any time 𝑡 ∈ R+ by 𝑋𝑡 . By assumption, we have 𝑋𝑡 ⩽ 𝐶 for
all 𝑡 ∈ R+. We define the history of the prompt occupancy
process of KV cache until time 𝑡 as F𝑡 ≜ 𝜎 (𝑋𝑠 , 𝑠 ⩽ 𝑡). The
natural filtration of process 𝑋 is denoted F• ≜ (F𝑡 : 𝑡 ⩾ 0).

2.3 Prefill and decode
We consider a departure threshold based scheduling algo-
rithm for switching between decode and prefill stages. For a
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departure threshold of 𝐾 , the system switches from decode
phase to prefill phase when there are 𝐾 or more prompt
departures from the KV cache since last prefill. During the
prefill phase, KV cache is prefilled to its maximum batch size
of 𝐶 prompts from the infinitely backlogged requests. For
each 𝑘 ∈ N, we define the 𝑘th instant when the KV cache is
prefilled upto its maximum by 𝑇𝑘 and the 𝑘th instant when
the KV cache has 𝐾 or more prompt departures by 𝑆𝑘 . That
is, we denote 𝑘th decode and prefill phases as

𝐷𝑘 ≜ (𝑇𝑘−1, 𝑆𝑘 ], 𝑃𝑘 ≜ (𝑆𝑘 ,𝑇𝑘 ] .
Taking 𝑋0 ≜ 𝐶 and 𝑇0 ≜ 0, we observe that the beginning
of 𝑘th decode phase is𝑇𝑘 ≜ inf {𝑡 > 𝑆𝑘−1 : 𝑋𝑡 = 𝐶} . Further,
the beginning of 𝑘th prefill phase is

𝑆𝑘 ≜ inf {𝑡 > 𝑇𝑘 : 𝑋𝑡 ⩽ 𝐶 − 𝐾} .
During the prefill phase, the system has an aggregate

processing rate of 𝑁 parallel token computations in 𝑡𝑝 time
units with an overhead of 𝑐𝑝 time units to switch from decode
to prefill. During the 𝑘th prefill phase, the system needs to
process (𝐶 − 𝑋𝑆𝑘 )𝑑0 input tokens and generate (𝐶 − 𝑋𝑆𝑘 )
output tokens. Since the inference system has a constant
speed of 𝑁 /𝑡𝑝 token generations per unit time during prefill
stage and there is a constant stall overhead of 𝑐𝑝 , the end of
𝑘th prefill phase occurs at

𝑇𝑘 = 𝑆𝑘 + 𝑐𝑝 +
𝑡𝑝𝑑0

𝑁
(𝐶 − 𝑋𝑆𝑘 ). (1)

During the decode phase, the system can generate at max-
imum 𝑁 ∧ 𝑋𝑡 output tokens in parallel corresponding to 𝑋𝑡
prompts in the KV cache. Therefore, we focus on the case
when 𝐶 ⩽ 𝑁 . We observe that decode time to generate 𝑋𝑡
tokens in parallel is 𝑐𝑑 + 𝑡𝑑𝑋𝑡 , which is also called time be-
tween tokens (TBT). Assuming no contention between the
𝑋𝑡 prompts in a batch, 𝑐𝑑 can be considered to be the time
to complete the model execution for one token generation
per prompt in the GPU kernel.1 However, it is known [2]
that the decode phase is memory-bound and the 𝑋𝑡 prompts
need to share the finite GPU memory bandwidth while ac-
cessing the KV-cache. As such 𝑡𝑑 can be considered to be
the slowdown factor due to memory contention. During the
𝑘th decode phase, we can define the instant of 𝑗th parallel
token generation time as 𝑡𝑘,𝑗 , where 𝑡𝑘,0 ≜ 𝑇𝑘−1. We denote
the number of prompts in the KV cache at the instant 𝑡𝑘,𝑗 as
𝑋𝑘,𝑗 ≜ 𝑋𝑡𝑘,𝑗 . From the assumption on token generation times,
we have 𝑡𝑘,𝑗 = 𝑡𝑘,𝑗−1 + 𝑐𝑑 + 𝑡𝑑𝑋𝑘,𝑗−1. We define the number
of parallel token generations before 𝐾 or more departures in
the 𝑘th decode phase as 𝑁𝑘 ≜

{
𝑗 ∈ N : 𝑋𝑘,𝑗 ⩽ 𝐶 − 𝐾

}
. We

observe that 𝑆𝑘 = 𝑡𝑘,𝑁𝑘
, and can write the length of the 𝑘th

decode phase as

𝑆𝑘 −𝑇𝑘−1 = 𝑡𝑘,𝑁𝑘
− 𝑡𝑘,0 = 𝑁𝑘𝑐𝑑 + 𝑡𝑑

𝑁𝑘−1∑︁
𝑗=0

𝑋𝑘,𝑗 . (2)

1plus a small vLLM engine overhead per decode iteration.

We summarize the timing diagram of events in one decode
and prefill phase in Figure 1.

Token generation Prefill for new prompts

Figure 1. Timing diagram and state evolution between two
prefills.

Since we are considering a system with large prompt ar-
rival rate, we measure the system performance in terms of
system throughput. The rate of change of number of prompts
is nonpositive in decode phase 𝐷𝑘 and nonnegative in prefill
phase 𝑃𝑘 for each 𝑘 ∈ N. The rate of prompt departures
equals the negative rate of change of number of prompts,
and thus the limiting throughput of the system as a function
of departure threshold𝐾 is 𝜌 (𝐾) ≜ lim𝑡→∞

1
𝑡

∫
𝑠⩽𝑡 (−𝑑𝑋𝑠∨0).

Problem 1. We are interested in finding the optimal depar-
ture threshold of prompts for a prefill event, that maximizes
the throughput of the inference system under consideration.
That is, we wish to find 𝐾∗ ≜ argmax {𝜌 (𝐾) : 𝐾 ∈ [𝐶]} .

3 Analysis
In this section, we compute the throughput in terms of ratio
of𝐶−E𝑋𝑆𝑘 and E(𝑇𝑘 −𝑇𝑘−1). This is difficult to compute, and
optimal threshold can only be found numerically. Neverthe-
less, we propose an approximate way to compute throughput.
We show that there exists an optimal departure threshold
𝐾∗ that maximizes the approximate throughput.

Lemma 1. If prompt service times are geometrically dis-
tributed with success probability 𝛼 , then the evolution of 𝑋𝑘,𝑗
is Markov for 𝑗 ∈ {1, . . . , 𝑁𝑘 }. In particular, the distribution
of 𝑋𝑘,𝑗 is a Binomial with parameters (𝑋𝑘,𝑗−1, 1 − 𝛼).

Proof. From memoryless property of geometric distribution,
the remaining output token distribution remains geometric
with success probability 𝛼 . A prompt 𝑛 departs iff 𝐽𝑛 = 1
and stays if 𝐽𝑛 > 1, i.e. 1{ 𝐽𝑛>1} is the indicator of an existing
prompt 𝑛 from time 𝑡𝑘,𝑗−1 to remain in the KV cache at time
𝑡𝑘,𝑗 . Since 1{ 𝐽𝑛>1} is a Bernoulli random variable with mean
1 − 𝛼 , the result follows from the facts that the number of
output tokens for all prompts are i.i.d. and there are 𝑋𝑘,𝑗−1
prompts at time 𝑡𝑘,𝑗−1. □

Lemma 2. The mean length of 𝑘th decode phase is

E(𝑆𝑘 −𝑇𝑘−1) = 𝑐𝑑E𝑁𝑘 +
𝑡𝑑

𝛼
(𝐶 − E𝑋𝑆𝑘 ) .

Proof. We define a filtration as G𝑘• ≜ (G𝑘𝑗 : 𝑗 ∈ N) where
G𝑘𝑗 = 𝜎 (𝑋𝑘,0, . . . , 𝑋𝑘,𝑗 ). We observe that 𝑁𝑘 is a stopping
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time adapted to G𝑘 and we can write the following tele-
scopic sum𝐶 −𝑋𝑘,𝑁𝑘

=
∑
𝑗∈N (𝑋𝑘,𝑗−1 −𝑋𝑘,𝑗 )1{ 𝑗⩽𝑁𝑘 } . Taking

expectation on both sides of the above equation, using the
fact that 𝑋𝑘,𝑗−1 − 𝑋𝑘,𝑗 ⩾ 0 for 𝑗 ⩽ 𝑁𝑘 , and exchanging ex-
pectation and sum using monotone convergence theorem,
we obtain 𝐶 − E𝑋𝑘,𝑁𝑘

=
∑
𝑗∈N E[(𝑋𝑘,𝑗−1 − 𝑋𝑘,𝑗 )1{ 𝑗⩽𝑁𝑘 }] .

Using the tower property of conditional expectation, the fact
that {𝑁𝑘 ⩾ 𝑗} ∈ G𝑘𝑗−1 and 𝑋𝑘,𝑗−1 is G𝑘𝑗−1 measurable, and
monotone convergence theorem to exchange summation
and expectation, we obtain

𝐶 − E𝑋𝑘,𝑁𝑘
= E

∑︁
𝑗∈N

1{ 𝑗⩽𝑁𝑘 } (𝑋𝑘,𝑗−1 − E[𝑋𝑘,𝑗 | G𝑘𝑗−1])

The result follows from Lemma 1 and substituting in (2). □

Theorem1. For the inference system under consideration with
prefill after 𝐾 or more departures, the limiting throughput is

𝜌 (𝐾) =
𝐶 − E𝑋𝑆1

E𝑇1
=

(𝑐𝑝 + 𝑐𝑑E𝑁1

𝐶 − E𝑋𝑆1
+ 𝑡𝑑
𝛼

+
𝑡𝑝𝑑0

𝑁

)−1
.

Proof. We observe that 𝑇𝑘 , 𝑆𝑘 are almost surely finite stop-
ping times adapted to F•, and 𝑋𝑇𝑘 = 𝐶 for all 𝑘 ∈ Z+. Further
at each instant 𝑇𝑘 , we have 𝐶 geometrically distributed out-
put tokens with constant token generation times. From the
memoryless property of geometric distributions indepen-
dent of F𝑇𝑘 , it follows that 𝑆𝑘 −𝑇𝑘−1 is independent of F𝑇𝑘−1
and identically distributed for all 𝑘 ∈ N. Further, we have
𝑋𝑆𝑘 is independent of F𝑇𝑘−1 and identically distributed for
all 𝑘 ∈ N. It follows that (𝑇𝑘 : 𝑘 ∈ Z+) are renewal instants.
We can consider the number of departures in 𝑘th renewal

interval as the aggregate reward. Since 𝑑𝑋𝑠 ⩽ 0 for all 𝑠 ∈ 𝐷𝑘
and 𝑑𝑋𝑠 > 0 for all 𝑡 ∈ 𝑃𝑘 , we obtain∫ 𝑇𝑘

𝑇𝑘−1

(−𝑑𝑋𝑡 ∨ 0) = −
∫ 𝑆𝑘

𝑇𝑘−1

𝑑𝑋𝑡 = 𝐶 − 𝑋𝑆𝑘 .

The result follows from the application of renewal reward
theorem [7] and Eq. (1) for prefill duration 𝑇𝑘 − 𝑆𝑘 . □

Remark 1. Computation of E𝑋𝑆1 and E𝑁1 are difficult ana-
lytically, and can only be computed numerically. However,
we propose an approximate way of computing them. By def-
inition, we have 𝐶 − 𝑋𝑆1 ⩾ 𝐾 , and hence 𝐶 − E𝑋𝑆1 ⩾ 𝐾 .
Thus, we have 𝜌 (𝐾)−1 ⩽ (𝑐𝑝 + 𝑐𝑑E𝑁1)/𝐾 + 𝑡𝑑/𝛼 + 𝑡𝑝𝑑0/𝑁 .
We approximate 𝑋𝑆𝑘 ≈ 𝐶 − 𝐾 and use the lower bound on
throughput as its approximation.

Proposition 1. For small departure threshold 𝐾 and large
batch size𝐶 , the inverse of throughput for the inference system
under large arrival rates, departure threshold based switching
between phases, and geometrically distributed output token,
can be approximated as

𝜌 (𝐾)−1 ≈ 1
𝐾

(
𝑐𝑝 + 𝑐𝑑

ln(1 − 𝐾
𝐶
)

ln(1 − 𝛼)

)
+ 𝑡𝑑
𝛼

+
𝑡𝑝𝑑0

𝑁
.

Proof. We approximate 𝑋𝑆𝑘 ≈ 𝐶 − 𝐾 and thus from Theo-
rem 1 and Lemma 2 it suffices to approximate E𝑁1. We know

that a binomial random variable with parameters (𝑁, 𝑝) con-
centrates around its mean 𝑁𝑝 for large 𝑁 . Hence, for small
𝐾 and large𝐶 , we can approximate the number of departures
in iterations 𝑗 ⩽ 𝑁1 by 𝑋1, 𝑗−1 −𝑋1, 𝑗 ≈ 𝑋𝑘,𝑗−1 (1− 𝛼). We can
approximate𝑋𝑘,𝑗 ≈ 𝑋𝑘,0 (1−𝛼) 𝑗 for 𝑗 ∈ [𝑁1] where𝑋𝑘,0 = 𝐶 .
Thus, we can approximate 𝐶 (1 − 𝛼)𝑁1 ≈ 𝐶 − 𝐾 and thus
𝑁1 ≈ ln(1 − 𝐾

𝐶
)/ln(1 − 𝛼). The result follows from substitut-

ing approximations for 𝑋𝑆𝑘 and E𝑁𝑘 in Theorem 1. □

Remark 2. We observe that the inverse throughput is pos-
itive and convex for 𝐾 ∈ [0,𝐶] and hence has a unique
minimum, indicating a unique departure threshold 𝐾∗ that
maximizes the approximate throughput. We also note that
𝐾∗ > 1 only if prefill stall time 𝑐𝑝 > 0. The sequential time 𝑡𝑑
for each decode and prefill generation time per token 𝑡𝑝𝑑0/𝑁
do not affect the shape of throughput. They merely reduce
the throughput by a constant factor.

4 vLLM characterization
We perform empirical characterization on a vLLM inference
serving system equipped with an accelerator (GPU) to inves-
tigate the correlation of prefill time and time-between-tokens
with the departure threshold 𝐾 . Specifically, we derive the
system parameters (𝑐𝑝 , 𝑡𝑝 ) for the prefill times and (𝑐𝑑 , 𝑡𝑑 )
for decode times, to obtain the optimal solution to Problem 1
using the empirical observations from the vLLM server.

4.1 System setup
We use a virtual machine with eight dedicated cores (16
vCPUs) of an AMD EPYC 7513 processor and 64GB dedi-
cated RAM. The VM has a dedicated NVIDIA A100 PCIe
GPU (80GB VRAM) mapped through PCIe pass-through. For
consistency and reproducibility, the GPU SM frequency and
memory frequency are set to 1380 MHz and 1512 MHz, re-
spectively. The GPU driver version is nvidia-550.127.08, and
the CUDA library version is 12.4. We use pre-built binaries
(version 0.6.3.post2) supplied by vLLM repository [6].

For characterization, we conduct inference on LLaMA [13],
a 8.03B parameter model, and IBM-Granite [4], a 8.17B pa-
rameter model, using vLLM inference server. We set the
maximum batch size for the Granite model to 𝐶 = 331 and
for LLama3 model to 𝐶 = 410. For all the experiments, mod-
els were served using the OpenAI API compatible server
endpoint of vLLM. We perform characterization for two
datasets. The first one is a synthetic dataset, where we syn-
thesize prompts that consist of a constant number of input
tokens, i.e., 𝑑0 = 285. The number of output tokens is sam-
pled from a geometric distribution with mean 1/𝛼 = 201.
These values are chosen to match the mean values from a
real-life dataset which is our second dataset ShareGPT [3].
To analyze our proposed policy in a more realistic evalua-
tion framework, we chose ShareGPT workload, which is a
collection of user chats at chatGPT with varying sequence
lengths and non-geometric distribution. We note that it is a
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filtered version of the original ShareGPT dataset, where the
prompts with invalid responses are removed.
Apart from inference throughput, which we analytically

compute, we also measure average and normalized prompt
completion time. Throughput is computed as the average
number of prompts completed per unit of time. The normal-
ized prompt completion time is computed by dividing each
prompt’s completion time by the total number of output
tokens. We note that the prompt completion time does not
include the time spent in the input queue, as we analyze a
backlogged queue system.

4.2 Proposed Scheduler implementation
The default vLLM scheduler performs prefill after every
iteration (token generation during the decode phase) if
there are prompts in the queue and there is space in
KV-cache (due to the departure of a prompt). Contrast-
ingly, the proposed departure threshold based schedul-
ing algorithm performs prefills only after accumulating
a threshold of 𝐾 or more departures. We achieve this
by modifying the _schedule_default() method within
vllm/core/scheduler.py. To keep the inference server’s
queue backlogged, we configure the client to send an initial
burst of requests that is much larger than the batch size 𝐶
configured at the server. Completed prompts at the server
are immediately replaced by new request prompts from the
client to keep the server queue backlogged.

4.3 Measurements
We make measurements of prefill and decode times by log-
ging timestamps of the scheduling and processing events
occurring within the core inference engine. On invocation of
the scheduler, we log its decision (prefill/decode), batch size,
and time stamp. We also log the time stamp when the worker
(GPU kernel) returns the tokens for the current batch.

4.4 Results
Next, we present the results of the characterization experi-
ment. In Figure 2, we plot the average prefill times obtained
for Granite and LLaMA3 for both the synthetic and ShareGPT
datasets. We observe that the prefill time is an affine func-
tion of the batch size, with two components: (a) a scheduling
overhead 𝑐𝑝 owing to the transfer of prompts from the input
queue to the vLLM engine plus a fixed overhead in switch-
ing from decode to prefill, and (b) the time to process the
input tokens corresponding to the prefill batch size. It is
known [2, 8] that prefill is a compute-heavy phase, leading
to prefill time increasing linearly with batch size beyond the
GPU computation capacity.

Similarly, in Figure 3, we present the mean TBT obtained
for both models and data sets. Similar to the prefill time,
the mean TBT is an affine function of the decode batch size.
In accordance with the system model for decode time in
Section 2, the y-axis intercept is 𝑐𝑑 , the interference-free
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Figure 2. Average prefill time (𝑠) vs. prefill batch size.

compute time, while the slope of the curve 𝑡𝑑 , represents
memory contention slowdown factor. We also observe that
the mean TBT curve exhibits sharp jumps at specific batch
sizes.
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Figure 3. Average TBT (𝑠) vs. decode batch size.

5 Evaluation results
We validate the efficacy of the proposed departure threshold-
based scheduling policy by measuring the impact of the
departure threshold 𝐾 on crucial performance metrics. We
compare the analytical results with the model simulations
and experiments. We obtain the system parameters for the
analytical result by curve-fitting the characterization results
in Section 4, which are utilized for the model simulations
and the numerical evaluation of analytical results. The exper-
imental setup is similar to that used for empirical characteri-
zation in Section 4. Figure 4 depicts the behavior of average
throughput with varying maximum KV cache batch size 𝐶 .
As expected from Proposition 1, the average throughput is
an increasing function of the batch size.
We present the average of throughput and prompt com-

pletion time (𝑠) for the Granite model in Figure 5 and for the
LLaMA3 model in Figure 6, for ShareGPT dataset. Proposi-
tion 1 suggests that there exists an optimal departure thresh-
old 𝐾∗ corresponding to the maximum throughput for a
fixed maximum batch size. We observe this in Figure 5a and
Figure 6a. The theoretically predicted optimal throughput
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Table 1. Optimal performance metrics

Model Proposed policy Default policy K = 1
Type Tpt(Exp), K Tpt(Num), K Opt mean time* Opt 95% time* Tpt(Exp) Mean time* 95% time*

Granite (shGPT) (12.92, 32) (13.09, 26) 0.1161 0.1656 11.38 0.1230 0.1400
LLaMA3 (shGPT) (17.24, 75) (21.04, 58) 0.1289 0.210625 15.16 0.1297 0.149398
*Normalized
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Figure 4. Throughput vs. batch size.

is within 1.3% of the experimental optima for Granite, and
18% of the experimental optima for Llama3. This shift in
optima arises due to single parameter 𝑐𝑑 fitting the char-
acterization curve which appears to have different values
in different regime. For Granite model, we notice that our
policy achieves an improvement of ∼ 13.5% in throughput,
accompanied by a reduction of ∼ 14% in average prompt
completion time, as seen in Figure 5, as compared to the
default scheduling policy. We observe a significant improve-
ment over the existing policy for Llama3 model as well, with
∼ 13.7% higher throughput along with a ∼ 17% lower aver-
age prompt completion time, as seen in Figure 6. The exact
values of the optimal metrics are tabulated in Table 1. In ad-
dition, we also look into the normalized prompt completion
times for both the models. Figure 7 shows the variance of
average normalized prompt completion time and the 95%-ile
prompt completion time on the departure threshold 𝐾 . It is
expected to increase with throughput. We observe that the
normalized 95%-ile prompt completion time is within 1.5×
the normalized mean completion time.

6 Conclusion and future work
We analytically modeled an inference system for large re-
quest arrival rates and proposed a departure threshold based
scheduling policy for switching between decode and pre-
fill phases. We predicted the existence of a non-trivial op-
timal departure threshold 𝐾∗ that maximizes the system
throughput. Experimental results corroborate the prediction
of the existence of an optimal threshold 𝐾∗. The analytically
predicted threshold 𝐾∗ was close to the experimentally ob-
tained one for Granite, verifying the goodness of the model.
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Figure 5. Performance metrics vs. departure threshold 𝐾 for
the Granite model with the ShareGPT dataset
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Figure 6. Performance metrics vs. departure threshold 𝐾 for
the LLaMA3 model with the ShareGPT dataset
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Figure 7. Normalized prompt completion time (𝑠/token) as
a function of number of departures required for new prefill,
for ShareGPT dataset

We observed that our proposed policy, in comparison with
the default policy, achieves at least a 13% improvement in
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throughput and at least a 14% reduction in average prompt
completion time. Our proposed policy can be incorporated
into the inference engine offline by computing the optimal
departure threshold and adjusting the parameters of the in-
ference engine accordingly or online by accessing the traffic
characteristics and deciding the parameters in real time. An
interesting future direction is to model tensor parallelism for
handling larger models through multi-GPU configuration.
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