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Abstract
LLM training is a demanding workload that requires careful
coordination among hardware components, ensuring high
GPU utilization, rapid data transfer, and minimal memory
overhead. This synergy leads to an efficient AI training sys-
tem. Scaling LLMs encounters memory constraint challenges,
particularly the optimizer state, whose size in bytes scales
with a factor of 12× the number of model parameters. In
this paper, we explore the impact of offloading the optimizer
state and parameter update operation to a SmartNIC. Opti-
musNIC reduces communication overhead between GPUs,
minimizes GPU computation (by handling the optimizer
step externally), and significantly decreases memory require-
ments. These improvements allow GPUs to accommodate
additional model layers and efficiently train and fine-tune
models with minimal resources. In addition to examining
the impact of OptimusNIC, we evaluate DeepSpeed’s ZeRO-
Infinity framework, identifying key limitations associated
with using the CPU as the offloading target and we demon-
strate why OptimusNIC offers a more efficient alternative.
Furthermore, we analyze the usability of one of the target
platforms for OptimusNIC: the NVIDIA BlueField-2 DPU.
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1 Introduction
Nowadays, distributed AI training systems try to balance be-
tween computation, communication, and memory usage to
deliver the best performance with respect to some metrics. A
distributed training workload comprises four principal steps,
forward step, backward step, gradient aggregation, and pa-
rameter update. The four operations require storing multiple
states:model parameters, gradients, and optimizer state.
Training large-scale AI models, particularly Large Lan-

guage Models (LLMs), requires vast computational resources
and efficient parallelism strategies. Traditional approaches
such as Data Parallelism (DP) and Model Parallelism (MP)
struggle to keep pace with the ever-growing model sizes,
even with the latest GPU hardware. To address these limita-
tions, state-of-the-art systems like FSDP [26], MegatronLM
[22], and DeepSpeed [17] have combined advanced paral-
lelism techniques (e.g., Pipeline Parallelism [11] and Tensor
Parallelism [14]) and introduced model partitioning strate-
gies. These innovations help scale training to larger models
but come with significant memory and computation over-
heads.
A notable optimization introduced by frameworks like

DeepSpeed ZeRO++ [24] is communication reduction by
maintaining a secondary copy of the model and using pa-
rameter and gradient compression. This allows the system to
reduce communication time. However, this comes at the cost
of increased GPU workloads: GPUs must now execute addi-
tional compression kernels, leading to resource contention
and sub-optimal performance making the framework strug-
gle to scale efficiently [2, 25].
The core challenge is that GPUs are increasingly becom-

ing overburdened with both core compute tasks (forward,
backward passes, and optimizer state updates) and auxiliary
compute tasks (communication, and compression). This re-
source contention not only limits the ability to train larger
models efficiently but also increases training time and costs.
Furthermore, the large memory requirements of these mod-
els force the use of more GPUs, driving up infrastructure
costs and making large-scale training even more expensive.
Recent work has shown that offloading GPU operations

to SmartNICs (network interface cards with compute ca-
pabilities) offer a promising solution by alleviating GPU
workloads and optimizing resource utilization. FPGA-based
SmartNICs were studied and used to offload compression
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Figure 1: Distributed Training Iteration Steps

operations [16, 19, 20]. In-network aggregation and collec-
tive communication offloading [9, 13, 15, 21] has also been
studied as an approach to reduce communication overhead
in distributed training systems. By performing operations
such as gradient aggregation directly within network devices
like SmartNICs or programmable switches, these methods
can optimize data transfers between GPUs.

Optimizer state offloading was first studied in ZeRO Infin-
ity [18], which introduced the idea of offloading optimizer
state, gradients, and parameters to CPU or NVMe storage,
significantly reducing the memory footprint per GPU, and
enabling the training of larger models. However, this ap-
proach introduces I/O operations and faces increased com-
munication overhead between the GPU and host memory.
Our measurements (§ 5) show that non-overlapped com-
munication in ZeRO-Infinity accounts for up to 27% of the
optimizer step’s time.

Building upon the promising idea of optimizer offload, we
introduce OptimusNIC, which offloads critical operations
from GPUs to SmartNICs. Unlike existing solutions, Opti-
musNIC stores optimizer state across SmartNICs while also
offloading parameter updates and gradient communication,
reducing GPU resource contention and improving training
efficiency. SmartNICs are particularly well-suited for this
role because they are closer to the network than CPUs, re-
ducing the overhead associated with transferring optimizer
state to general-purpose CPUs. Since gradient reduction hap-
pens directly on the SmartNIC, optimizer state updates can
be performed locally, avoiding unnecessary data movement
between GPUs and CPUs. By shifting these operations away,
OptimusNIC allows GPUs to focus exclusively on forward
and backward computations, improving overall efficiency.
Additionally, memory requirements per GPU are reduced by
4×, as the optimizer state is stored on SmartNICs, enabling
the system to host larger models or train/finetune models
using fewer resources.

In this work-in-progress paper, we primarily explore the
impact of OptimusNIC on GPUmemory requirements (§ 3.1),
computation (§ 3.2), and communication time (§ 3.3). We
highlight the various challenges (§ 4) associated with these
aspects, along with testing and profiling ZeRO-Infinity (§ 5)
to assess its efficiency and overheads. These insights pave the
way for more effective strategies in optimizing large-scale
model training.

2 Background
2.1 Distributed Training
Distributed training enables scalingmachine learningmodels
across multiple devices by dividing computation and mem-
ory workloads. The process consists of four key steps (Fig. 1):
Forward Pass: Computes predictions using stored model
parameters (𝑊 ), which remain unchanged during this phase.
Backward Propagation: Computes gradients (𝑔) via back-
propagation for updating model parameters.
Gradient Aggregation: Synchronizes gradients (𝑔) across
GPUs to maintain consistency, introducing communication
overhead.
Optimizer Step: Updates model parameters using the opti-
mizer state (𝑚, 𝑣, 𝜃 ), which require significant memory stor-
age.
Efficiently managing these operations is crucial to re-

ducing memory and communication overheads in large-
scale training systems. To scale training further, modern
distributed training frameworks employ a combination of
parallelism strategies:
Data Parallelism (DP) replicates the model across multiple
GPUs, where each GPU processes different mini-batches of
data and synchronizes gradients after backpropagation.
Tensor Parallelism (TP) splits individual layers across mul-
tiple GPUs, allowing them to collaboratively compute matrix
multiplications for large model parameters.
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Pipeline Parallelism (PP) partitions the model across mul-
tiple GPUs, with different GPUs processing different layers
sequentially in a pipelined manner to optimize resource uti-
lization and minimize memory overhead.
3D Parallelism combines DP, TP, and PP to maximize effi-
ciency when training large-scale models.

2.2 Memory Requirements
Memory requirements for mixed-precision training (the de-
facto standard for LLM pre-training [7, 8]) primarily con-
sist of model parameters (𝑊 ), gradients (𝑔), and opti-
mizer state (𝑚, 𝑣, 𝜃 ). Assuming as per best practices half-
precision (16-bit) for parameters and gradients and full pre-
cision (32-bit) for optimizer state, the total bytes required
per GPU for a model with 𝐷 parameters is:

𝑀 = 2𝐷 + 2𝐷 + 12𝐷 = 16𝐷.

ZeRO mitigates this by partitioning memory across 𝑁𝑝 de-
vices, Specifically, ZeRO-Stage 3 partitions all model states:
optimizer state, gradients, and parameters across data-parallel
processes, reducing the per-device requirement to 𝑀

𝑁𝑝
bytes.

Additionally, ZeRO-Infinity extends these capabilities by
enabling the offloading of model states to CPU or NVMe
memory, further alleviating GPU memory constraints.

2.3 SmartNICs
SmartNICs are specialized network adapters that integrate
compute capabilities, allowing for offloading tasks tradition-
ally handled by CPUs or GPUs. These devices enhance sys-
tem efficiency by reducing data transfer overhead and en-
abling in-network computation.
Several types of SmartNICs exist [12], each catering to

different computational needs. We consider two primary tar-
gets:
NVIDIA BlueField (BF) SmartNICs: BlueField SmartNICs
combine a System-on-Chip (SoC) ARM-based compute cores
with high-speed networking capabilities, enabling offloading
of network processing tasks and hardware accelerators for
specific security (e.g., encryption) and storage (e.g., compres-
sion) operations.
FPGA-based SmartNICs: These SmartNICs leverage Field
Programmable Gate Arrays (FPGAs) for high customizabil-
ity and efficiency in specific workloads. Examples include
the Xilinx Alveo™ series, which provides flexible hardware
acceleration for AI and networking tasks. While more power-
efficient than general-purpose processors, FPGA-based Smart-
NICs require extensive engineering effort for adoption.

3 Opportunities
Our work explores the impact of offloading the optimizer
state in three key areas:

Memory Efficiency: By reducing GPU memory usage, Op-
timusNIC enables either larger models to fit within the same
hardware or efficient fine-tuning with fewer GPUs, making
it particularly beneficial for workloads where parameter-
efficient fine-tuning (PEFT) methods are not assumed.
Compute Offloading: Computing updates to optimizer
state within SmartNICs frees up cycles on GPUs for forward
and backward passes, improving resource utilization.
Communication Overhead: Offloading optimizer state
frees GPU memory, allowing more layers to be hosted per
GPU. This reduces the need for intermediate activation trans-
fers between GPUs, minimizing per-layer communication
overhead and improving training efficiency.

3.1 Lower Memory Per GPU
The memory usage can be significantly reduced by leverag-
ing OptimusNIC to offload the optimizer state. In a model-
partitioned setting, such as ZeRO, memory requirements for
the optimizer state, gradients, and model parameters are dis-
tributed across 𝑁𝑃 parallel workers. This partitioning results
in a per-GPU memory footprint corresponding to 16𝐷

𝑁𝑃
bytes.

With OptimusNIC offloading the optimizer state, themem-
ory requirement for the optimizer state ( 12·𝐷

𝑁𝑃
) is entirely re-

moved from the GPU, leaving only the gradients and model
parameters. Thus the per-GPU memory requirement be-
comes 𝑀̄ = 4·𝐷

𝑁𝑃
bytes.

This optimization achieves a 4× reduction in per-GPU
memory requirement, freeing up resources to host larger
models and reducing the need for additional hardware. By
combining this approach with ZeRO’s partitioning strate-
gies, OptimusNIC enhances both memory efficiency and
scalability in distributed training.

3.2 Sparing GPU Cycles
To estimate the compute time savings from offloading com-
putation, we experiment with a model composed entirely of
TransformerDecoderLayer, which serve as the fundamental
building blocks of large language models (LLMs). Each de-
coder layer contains 151M parameters, and we use a total
of 4 decoder layers. The experiments run on NVIDIA A100
GPUs while we vary sequence length in [64, 128, 256, 512].

For each configuration, we measure the ratio of time con-
sumed by the optimizer step relative to the total iteration
time. Table 1 demonstrates that this ratio decreases as se-
quence length increases. This trend is attributed to the grow-
ing computational cost of forward and backward passes,
which dominate the overall iteration time for longer se-
quences. We conclude that the optimizer step remains a
computational bottleneck but accounts for a smaller fraction
of the overall training time. This suggests that offloading the
optimizer step could provide performance gains.
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Table 1: Ratio of optimizer step time to total iteration time.

Sequence Length 64 128 256 512
Optimizer Step Ratio (%) 39.75 26.55 16.08 9.08

3.3 Less Communication Volume
Using the same model as in the previous experiment, we
compared the training performance on a single GPU versus
a 4-GPU setup using model parallelism. We use a factor
of 4 to represent the scaling benefit due to lower memory
requirements, which implies that less communication would
occur. The model is partitioned across 4 NVIDIA A100 GPUs,
with each GPU hosting one partition. We evaluate the impact
of model partitioning on forward and backward passes while
we vary sequence length in [64, 128, 256, 512]. We measure
the time required for both the forward and backward passes,
calculating the median over 50 trials for each configuration.
Table 2 indicates that while model parallelism enables

training larger models that exceed the memory capacity of
a single GPU, it also introduces significant communication
overhead that negatively impacts training efficiency. Specifi-
cally, our findings show that the forward pass experiences a
slowdown of up to 7.8%, while the backward pass sees up to
5% degradation. The slowdown is particularly pronounced
at smaller sequence lengths, suggesting that the cost of inter-
GPU communication outweighs the computational benefits
of distributing the model. Moreover, as sequence length in-
creases, the performance gap persists, demonstrating that
communication remains a limiting factor even for larger in-
put sizes. These results emphasize that, for models that fit
within a single GPU’s memory, avoiding model parallelism
can lead to better computational efficiency.

4 Challenges
Using SmartNICs to offload the optimizer state and update
step presents certain challenges. Compared to GPUs and
CPUs, current SmartNICs have limited memory and compute
power. We are curious to explore to what extent SmartNICs
may represent a promising target for offloading, and if they
fall short, what margin of improvements are necessary to
flip the calculus.

4.1 Do SmartNICs Have Enough Memory?
As discussed in the previous section, offloading the optimizer
state means that a SmartNIC would store 3×more state than
a GPU (i.e., 12𝐷 vs. 4𝐷 bytes). This may be reasonable if
we assume a well balanced server design where each GPU
is paired to an accompanying SmartNIC, which appears to
agree with current trends at industry [5, 6].
Beyond a relative perspective, we must be mindful of ab-

solute memory requirements. Currently, high-end GPUs like

A100 and H100 have up to 80 and 120 GB of memory, re-
spectively. As an example, consider the LLaMA 70B model
(1120 GB of model states). Let’s reason how this model may
fit in two NVIDIA DGX A100 nodes—each equipped with 8
GPUs, totaling GPU 1280 GB of memory. By employing a
3D parallelization strategy with (𝐷𝑃 = 2, 𝑇𝑃 = 2, 𝑃𝑃 = 4),
the model is distributed across 8 GPUs. This setup assigns
approximately 8.75 B parameters per GPU (140 GB).
ZeRO (Stage 3) reduces the memory footprint per GPU,

yielding 70 GB per GPU. While this requirement is lower
than an A100’s 80 GB memory, this allocation is too tight,
as additional memory is needed for activations and other
memory overheads. This is where OptimusNIC becomes
advantageous, as it offloads the optimizer state accounting
for 35 GB per GPU—thereby enabling the model to be run
on two DGX A100 nodes without scaling out three nodes.

To achieve this, a SmartNIC needs several GBs of memory.
Current commodity SmartNICs like NVIDIA BlueField-2 and
-3 have 16 and 32 GBs of onboard RAM, respectively. As this
capacity is significant yet insufficient, this indicates that it
may be necessary to leverage host memory for additional
storage. This challenge can be mitigated through an efficient
prefetching strategy to overlap CPU–SmartNIC communi-
cation and minimize latency. An plausible realization could
consider FPGA-based SmartNICs, known for their high pro-
grammability and flexibility. While most high-end FPGAs
currently provide 16 GB to 32 GB of onboard memory, they
enable custom optimizations that can help manage memory
constraints effectively. A commercially available candidate
for this workload is AMD’s Xilinx Alveo™ V80 [1] Compute
Accelerator Card, which combines 32 GB of HBMwith 32 GB
of DDR4 expansion memory, providing ample bandwidth
and storage.

4.2 Can A BlueField Run Optimizer Steps?
Aside from memory capacity, offloading optimizer update
steps require compute capability. While we expect a Smart-
NIC to be far less capable than a GPU or CPU (particularly
for SoC-based SmartNICs like the BlueField design), we wish
to quantify its performance and analyze the underlying tech-
nological trends.

We experiment by executing the optimizer step on a Blue-
Field-2 (BF-2) SmartNIC with 8 ARMv8 A72 cores at 2.75
GHz. We note that the optimizer step is an element-wise op-
eration over the model parameters and thus it can be easily
parallelized across multiple cores. Specifically, we measure,
while varying the thread count, the time required for an opti-
mizer step in a simple transformer model, which consists of
one TransformerDecoderLayer (4096 embedding size, 302M
parameters). The optimizer step time is measured over 25
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Table 2: Breakdown and relative slowdown of forward and backward pass in single- vs. 4-GPU model parallelism.

Sequence Forward Pass Backward Pass
Length Single GPU [ms] 4 GPUs [ms] Slowdown [%] Single GPU [ms] 4 GPUs [ms] Slowdown [%]
512 1084.21 1141.36 5.27 1906.43 1956.76 2.64
256 543.35 556.59 2.44 957.61 970.48 1.34
128 274.22 281.03 2.48 483.22 489.62 1.32
64 143.75 154.96 7.80 245.84 258.28 5.06
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Figure 2: Median optimizer step time (BF-2 vs. CPU).

trials. As a baseline, we compare against an AMD EPYC 7763
64-core CPU.

Figure 2 shows that as the threads increase, the optimizer
step time decreases in both cases, but the BF-2 remains slower
than the CPU by a factor of approximately 5–8×. This indi-
cates that for offloading on BF-2 to be viable, the optimizer
step workload needs to be spread over several SmartNICs to
recover baseline performance.
Meanwhile, SmartNIC technology is improving. BF-3 [3]

features 16 ArmCortex-A78 cores, doubling the core count of
BF-2 [4], which is equipped with 8 Arm Cortex-A72 cores. In
terms of CPU frequency, BF-2 cores can reach up to 2.75 GHz,
while BF-3 cores operate at frequencies up to 2.0 GHz in the
E-Series and up to 2.133 GHz in the P-Series. Additionally,
BF-3 transitions from DDR4 to DDR5 memory, significantly
enhancing memory bandwidth. These improvements make
BF-3 a viable candidate for offloading optimizer computa-
tions and bridging the performance gap between SmartNICs
and high-end CPUs. However, we are currently unable to
experiment with BF-3 due to hardware unavailability.

The CPU achieves a peak performance of 166 ms using 33
cores, while the best performance on BF-2 reaches 1429 ms.
High performance AI nodes typically feature multiple GPUs,
with each GPU linked to its own SmartNIC. Distributing the
optimizer step across all SmartNICs helps close this perfor-
mance gap, enabling a more scalable and efficient offloading

strategy. This is made possible by in-network gradient ag-
gregation [21], which allows the resulting gradients to be
efficiently distributed across the node’s SmartNICs using
a reduce-scatter collective operation. Combined with the
hardware improvements in BF-3, these SmartNICs present
a strong candidate for OptimusNIC, enhancing both perfor-
mance and scalability.

5 ZeRO-Infinity Analysis
In the previous section, we analyzed the optimizer step per-
formance on BF-2 and argued that a set of BF-3 SmartNICs
can collectively achieve performance comparable to high-
end data center CPUs. In this section, we assess the impact of
CPU-based offloading, highlight its limitations, and demon-
strate that OptimusNIC presents a more efficient option.

To explore the impact of offloading the optimizer state on
training performance, we use ZeRO-Stage 3 as our baseline
since ZeRO-Infinity is built on top of it and relies on its
mechanisms for offloading the optimizer state. We compare
two configurations: ZeRO-Stage 3 alone and ZeRO-Stage
3 with optimizer state offloading to CPU memory. In this
experiment, we measure the end-to-end iteration time of two
models: one with a single(Model 1) and another(Model 2)
with two TransformerDecoderLayer layers. The experiments
run on two nodes, each equipped with two NVIDIA A100
GPUs and an AMD EPYC 7763 64-core processor.

Table 3 shows that while ZeRO-Infinity reduces the mem-
ory requirement per GPU by offloading the optimizer state
to the CPU, it also introduces significant computational over-
head, leading to a notable increase in iteration time. The
optimizer step, in particular, experiences a substantial slow-
down due to communication delays and the lack of overlap
between computation and data transfers. As a result, the
total iteration time increases by 59.2% for the first model
and 51.7% for the second model when offloading is enabled.
This performance degradation is primarily driven by the op-
timizer step, which slows down by more than 12× compared
to executing on the GPU. These findings highlight the lim-
itations of CPU-based offloading and underscore the need
for a more efficient alternative, such as OptimusNIC, which
can mitigate these overheads.
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Table 3: Performance Breakdown of ZeRO-Infinity: Impact of Offloading on Training Iteration Time

Model Forward (ms) Backward (ms) Optimizer Step (ms) Total (ms)
Model 1 (No Offloading) 147.283 255.772 18.593 411.589

Model 1 (With Offloading) 152.419 243.095 255.822 655.335
Model 2 (No Offloading) 200.493 550.389 27.788 777.762

Model 2 (With Offloading) 205.796 554.082 406.518 1180.145

Table 4: Optimizer Step Profiling Results

Operation Self CPU % Self CPU Time (ms)
CPUAdam.step 26.02 59.344
aten::copy_ 19.60 44.699
aten::isinf 9.94 22.662
cudaMemcpyAsync 7.75 17.676
aten::any 7.20 16.432
aten::ne 6.92 15.791
aten::mul_ 6.75 15.403
aten::abs 6.74 15.382
aten::eq 6.71 15.296

In ZeRO-Infinity the optimizer step is performed after
performing the backward step across all the layers. During
the optimizer step, gradients computed on the GPU must
be transferred to the CPU for processing. This transfer is
followed by parameter updates, which are then sent back
to the GPU. The absence of overlap between these opera-
tions results in GPU idleness while waiting for the CPU to
complete the optimization process. Consequently, the GPU,
designed for high-throughput computations, remains un-
derutilized, leading to increased iteration time and reduced
training efficiency.
To better understand the overhead caused by the opti-

mizer step during training, we profiled the operations per-
formed as part of the optimizer step in a ZeRO Infinity
training run using Model 1. Table 4 shows that the major-
ity of execution time is spent on parameter update opera-
tions including CPUAdam.step and others. Besides, a signifi-
cant portion of time (27.35%) is spent on tensor copies, with
cudaMemcpyAsync and aten:: copy_ contributing 7.75%
and 19.60%, respectively. These operations introduce substan-
tial communication overhead due to frequent data transfers
stalling the GPU while waiting for the updated parameters
to start the next training iteration. These overheads grow al-
most linearly with the number of TransformerDecoderLayer

layers making it difficult to scale training for LLMs.
In-network aggregation enables gradients to reside in

SmartNICmemory, reducing the need for frequent data trans-
fers. Since gradients are aggregated layer by layer meaning
each model layer’s gradients are sent for aggregation once

its backward pass is complete, the optimizer step can be exe-
cuted on OptimusNIC immediately after aggregation. This
approach allows overlapping not only gradient communi-
cation and computation but also the optimizer step itself.
Results from Table 3 show that the optimizer step time is
always shorter than the combined duration of the forward
and backward passes. This indicates that overlapping these
operations is feasible, as the peak performance of multiple
SmartNICs and CPU-based optimizer steps are comparable.

6 Related Work
LuWu [23] addresses these inefficiencies by offloading the
optimizer state and parameters to an in-network optimizer
node, utilizing SmartNIC-SmartSwitch co-optimization. This
design enables the in-network optimizer to manage parame-
ter storage and updates, subsequently broadcasting the up-
dated parameters to GPU workers. While this approach al-
leviates some of the CPU-related bottlenecks, it introduces
potential communication constraints due to the centralized
nature of the in-network optimizer node, akin to bandwidth
limitations observed in parameter-server architectures.
Cerebras Systems Weight Streaming [10] disaggregates
parameter storage from compute using their MemoryX ser-
vice, enabling the training of larger models without requir-
ing parameters to reside in compute memory. While weight
streaming minimizes the need for parameter replication
and reduces communication bottlenecks, it relies heavily
on Cerebras-specific hardware like the Wafer-Scale Engine
(WSE-2) and SwarmX interconnect fabric to achieve these
gains. These solutions, while addressing specific issues in dis-
tributed training, underline the necessity for more efficient
and generalized approaches like OptimusNIC, which opti-
mally balances communication, computation, and memory
requirements across standard hardware setups.

7 Conclusion
While frameworks like ZeRO-Infinity attempt to alleviate
memory constraint issues by offloading optimizer state and
parameters to CPU or NVMe memory, such solutions of-
ten introduce significant bottlenecks, including heavy I/O
operations and limited overlap between computation and
communication. These inefficiencies emphasize the need for
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more advanced, hardware-optimized approaches. Optimus-
NIC presents a promising solution by offloading optimizer
statemanagement and parameter updates to SmartNICs. This
approach reduces communication delays, minimizes GPU
resource contention, and enhances memory efficiency, en-
abling GPUs to focus on compute-heavy tasks. As a future
direction, the design and implementation of OptimusNIC
should prioritize optimizing the partitioning of the optimizer
state across multiple SmartNICs and host memory while en-
suring efficient execution of optimizers on SmartNICs. These
improvements will enable the training of more complex mod-
els by minimizing bottlenecks and maximizing hardware uti-
lization, ultimately enhancing scalability and performance.
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