
Rethinking Observability for AI Workloads on
Multi-tenant Public Clouds

Theophilus A. Benson
Carnegie Mellon University

ABSTRACT
Today, a majority of AI workloads (LLM and D) are trained
and used on public clouds where the ML-engineers, i.e, ten-
ants, naturally, do not have sufficient information and control
over the cloud infrastructure. Yet, cloud infrastructure level
errors, while small, have the largest impact and can result in
significant monetary loss ($1.8-30K) and wasted time. Most
diagnosis efforts are manual which further exacerbates the sit-
uations and the few attempts at automated assume full control
over the entire ecosystem – not true in public clouds.

In this vision paper, we briefly survey recent reliability
publications from 4 hyperscalers which allows us to highlight
key challenges regarding debugging workloads in general
and specifically in a multi-tenant public cloud environments.
With these insights, we sketch a solution for diagnosis and
explore the design space of cooperative approaches to provide
sufficient information for this solution.

1 INTRODUCTION
Significantly large infrastructures are devoting to training
and inferences jobs, with recent data centers containing over
100,000 Nvidia H100 GPUs. At these scales, job failures and
inefficiencies are costly, with recent sources claiming between
1700-20,000$ per hour for customers for large clouds [7, 17].
However, today, diagnosis is mostly manual [9, 12] taking
1-3 days (Table 1) and failure is addressed by analyzing data
rolling back to the last checkpoint and restarting the job . The
efforts are wasteful for several reasons: first, during the days
required to resolve the failure, GPUs are idle; second, work
between the check pointing and failure is wasted and needs
to be re-run; third, re-running a job evicts lower priority jobs.

Despite the significant attention that LLM and learning
job failures have received, there are few automated solutions
for detecting failures [12, 20]. Moreover, none of these solu-
tions explicitly address the unique privacy and data-sharing
concerns for the cloud. The most related work, e.g., Super-
Bench [20] and ACME [12], assumes full access to tenant
workloads and leverages analysis to proactively detect faults.
However, for many clouds, the tenant and the provider do not
freely share all the information. Additionally, as both works
admit, detection can be limited due to the rapidly evolving
ecosystem.

In this work, we lay down the vision for an ensemble of
methods to reduce to costs of failures by combining proactive

Bytedance [7] Bing [20]
1-days 36% 61.9%
3-day 54% 13.7%
7-day – 10.3%
never 25% 10.3%

Table 1: Incident resolution time in several production
deployments (e.g., Alibaba [17], Bings [20]).

technique to detect failures before a job runs and reactive
techniques to detect impending failures, thus reducing wasted
resources. Our work builds on several key characteristics of
emerging LLM-workloads:

• Rapid Evolution: The software libraries, e.g., Pytorch,
evolve rapidly (i.e. 1 - 2 months), and the hardware sim-
ilarly evolves rapidly (i.e., 1-2 years). Consequently,
there are many version-specific bugs and often incom-
patibility between newer libraries and older hardware.
Thus, diagnostic efforts must be made with contextual
information about versions and possible configurations
in mind.

• Standard Frameworks: Although rapid evolution im-
plies a large echo system, fortunately, today training is
done with a limited set of libraries (e.g., CUDNN) and
tailored network stacks (e.g., CUDA). Consequently,
most workloads rely on the limited set of communi-
cation and computation operators provided by the li-
braries and stack to efficiently realize sufficient paral-
lelism to scale.

• Infrastructure Issues: Infrastructure class failures are
an infrequence but have a magnified impact. Due to
redundancies and allocation patterns, these issues of-
ten take time to manifest. Thus, we can detect their
accumulation patterns before catastrophic failure.

Our vision builds on the above observation in several ways
(illustrated in Figure 1): first, we leverage standardization as
a means to tackle the rapid evolution. Specifically, we iden-
tify key combinations of computation and communication
operators – we call these “archetypes”. Then, we identify the
software version that leads to changes in this “archetypes” to
further subdivide into “Sub-Archetypes”. Given these “Sub-
Archetypes”, we analyze historical data to create baselines
to detect the build-up patterns that lead to failures; and to
detect incompatibilities between ‘Sub-Archetypes” and spe-
cific hardware versions. To address the unique challenges of

1



EuroMLSys, 2025 Theophilus A. Benson

Figure 1: Pharoah’s offline analysis pipeline.

public cloud scenarios, our system introduces an interface
for information exchange – in particular, rather than sharing
all the details of their workloads, we ask that tenants share
and register Archetype signatures along with their workloads
when they start job (Figure 1). Given these signatures, the
cloud provider can perform analysis for tenants and provide
hints about potential outages. In this work, we consider reme-
diation out of scope; however, we believe that much of these
concepts can be re-used to learn and generalize remediation.

The key contributions are as follows.

• We empirically motivate resilience challenges and high-
light patterns that complicate diagnosis in the public
cloud setting, where providers and tenants hold differ-
ent potions of the puzzle.

• We discuss and evaluate the design space for diagnostic
solutions for public clouds.

• We lay out a vision for a cooperative approach that
aligns with existing cooperative models for diagnosis
in the public cloud space.

2 BACKGROUND: PROBLEM CONTEXT
2.1 ML Training Pipelines
Our work builds on the insight that while AI workloads and
use cases vary wildly, the data scientist and ML-engineers use
a common ML tool chains of libraries and frameworks (i.e.,
pytorch, CUDA, ONNX, CudaNN), illustrated in Figure 2.
This standardization to a common tool chain implies that the
translation from user code to CUDA programs/kernel is gen-
erally done via a small set of optimizations. In particular, to
improve efficiency, the various libraries and their heuristics
translate ML-training into a set of fixed specific structures
(tensor/matrix) and employ different permutations of a set
of well-understood computation operations (e.g., multiplica-
tion method) and communication operators (e.g., all-reduce).
Similarly, while hardware and their capabilities are fixed,
interleaving and multiplexing between workloads is not.

Regardless, we view the use of a common tool chain and
fixed hardware provide an opportunity for cost amortization
– a special purpose framework encapsulating domain knowl-
edge geared towards these common parts can be shared across
users.

CUDNN CUDA

CUDAGraph

CUTLASS

N
Ve

Li
nk

G
PU

Data 
Scientist

ML Engineer
(ML researcher)

Platform Engineering
(DevOps)

C
PU

N
et
w
or
k

G
PU

Common errors (i.e., errors created by libraries)

Se
rv
er
s

Sc
he

du
le
rs

CUDLAUser
Code

py
to
rc
h

Te
ns

or
Fl
ow

O
N
IX

Figure 2: This figure highlights the various persona and
the frameworks, libraries, and systems that they interact
with.

2.2 Personas and Roles in AI Training
Abstractly, there are three roles (from a human resources
perspective) involved in LLM training (we annotated Figure 2
with the role of each persona):

At the high end, data scientists write user code that selects
the data, determines the training approach, and performs them
on the data. These data scientists monitor their applications
and evaluate its performance using loss rates.

The ML-engineers work with the ML-Pipeline of frame-
works/libraries to determine which optimizations and libraries
to support data scientists – these include matrix multiplication
and graph management. The output of the ML-pipeline is a
job that is launched and run on a cluster.

Platform engineers / DevOps manage physical resources
and determine the resource allocation mechanisms used within
the cluster.

2.3 Deployment Models: Public Versus
Private Cloud

In this work, we explicitly focus on two models. In house,
where-in all teams belong to one organization (e.g., Meta),
and so there is potential more easily facilitate information ex-
change without legal constraints. The second, a cloud-based
scenario, in this deployment setting the ML-engineers and
ML-optimizers belong to a different organization than the in-
frastructure owner and DevOps. Consequently, the exchange
of information is not supported by default and requires clear
interfaces that provide very minimal information exchange.
Moreover, due to legal and security concerns, the type of
information is often constraint.

The above scenarios require the capture of infrastructure-
level information to address training issues. However, this
requires using information from the DevOps-persona to in-
form the ML-engineer-persona in improving their job. For
cloud deployment, the question of what to export is quite a
challenge. For example, with hardware error, acknowledg-
ing hardware defects can introduce legal liability. However,

2



Observing AI-Workloads EuroMLSys, 2025

Alibaba [17] Bing [20] Meta [9] Bytedance [7]
GPU 36.4% 69.5% 58% 48.6%
N/W 25% 11.1% 11.5% 14.9%

Table 2: Survey of Errors recently reported in Meta [9],
Alibaba [17], Bings [20], and Bytedance [7] deployments.

resource limitations may arise because of multiplexing of
physical hardware between different tenants.

3 EMPIRICAL CHARACTERISTICS
Next, we summarize insights from experience papers on pro-
duction deployments, industry blogs, and conversations with
ML-engineers/platform engineers.

3.1 Faults at Scale
Existing deployments on Meta, Alibaba and Azure / Bing
highlight several key availability challenges (Table 2).

First, hardware errors dominate across various deploy-
ments. In particular, they fall into three classes: persistent
errors – a specific device always generates errors and should
be quarantined; gray failures – a device generates errors only
when certainly accelerators are used and should be avoided
for certain types of jobs; a transient failure – a device causes a
failure due to a culmination of operational factors – simply re-
running the job should suffice. Disambiguating this difference
class of errors requires historical data and statistical analysis.

Second, network errors, i.e., “NCCL Timeout”, are also
quite dominant. However these errors conflate a large class
of root causes. For example, a memory issue that causes the
kernel to kill a worker will generate an “NCCL Timeout” as
with network congestion that leads to significant packet loss.
Resolving these errors requires (1) identifying all workers
participating in the job, (2) capturing their resources use and
capturing their logs, (3) determining which worker and which
resource was the bottleneck – then resizing the worker.

Third, many errors are ambiguous and could be due to de-
cisions or tools operating in different personas. For example,
“NCCL timeouts are one of the most common symptoms of
a failure whose root cause could be network infrastructure,
buggy model code, or other stuck components.” [14] – given
that this could be due to any of these, information from each
persona is required to effectively disambiguate this error.

Fourth, as many have observed, certain infrastructure-level
failures often have disproportional impact on the cluster. In
particular, links and switch failures account for less than 2%
but have a large magnified impact.

• “we see that such failures affect 0.2% of jobs. Neverthe-
less, we see that 18.7% of runtime is impacted by these
failures” –Meta’s LLAMA [9]

• “ 0.057% of NIC-ToR links fail each month, and about
0.051% of ToR switches encounter critical errors and

crashes. Under this high failure rate, a single LLM
training job would encounter 1-2 crashes each month.”–
Alibaba [17]

Takeaway: Although hardware errors and infrastructure
failures have a significant impact, within a public cloud set-
ting, these signals are often obscured and hidden from the
tenant and the manifest in ambiguous errors, e.g., “NCCL
timeout”.

3.2 Management Lessons
Given that the dominant approach is to restart and rerun jobs
ideally from checkpoints. There is a significant incentive
to understand and sort out why a job failed so that future
failures can be avoided or delayed. Next, we summarize some
of the challenges, specific to a multi-tenant cloud settings,
to identify and determine the appropriate changes to ensure
forward progress when the jobs are rerun.

Separation of Concerns and information Importance of
Appropriate Metrics: The various personas have metrics to
detect progress, e.g., ML-engineering examines the change in
loss, whereas DevOps examines resource utilization. We note
that often one class of metrics is insufficient. For example, a
poorly coded ML-application with an error in the loop which
uses just the first dataset instead of the other datasets will
continue to training (thus consume resources) but will show
no improvements in loss. This highlights the need for more
coordination and information exchange for detection.

Importance of Representativeness: Data science and ML-
engineers often work together to tailor optimizations. These
optimizations are tested on a small cluster. Often, there is a
difference in hardware and load between the test and produc-
tion clusters, leading to unexpected and novel failures.

Takeaway While infrastructure level is crucial, certain in-
formation about the workloads (e.g., performance metrics)
are only available at the tenant side. Moreover, while a tenant
can try to debug or recreate issues – the hardware differences
between production and testing hardware makes this challeng-
ing.

4 DESIGN SPACE
The diagnosis challenges faced while training LLMs and DL
workloads in public cloud echo the challenges faced while
running more traditional systems (e.g. microservices); how-
ever, the subtleties discussed in the last section make it more
challenging to infer information. Next, we examine the broad
set of approaches and highlight specific challenges that limit
their applicability. Figure 3 illustrates various levels of coop-
eration between the tenant and the provider.

Tenant Crowd-sourcing (No Tenant-Provider Cooper-
ation) A promising approach to overcome the lack of infor-
mation is to cooperate to collect and investigate information

3



EuroMLSys, 2025 Theophilus A. Benson

Figure 3: Space of design choices for tenant-provider co-
operation for aggregation sufficient information for diag-
nosis in a public cloud.

on the infrastructure [1]. These approach work in traditional
settings as the core information (or signals) being collected
are similar. In AI setting, due to diversity in SW and HW, sim-
ilar signals imply different things depending on the context
in which they are collected. Collaboration then requires both
sharing signals and key aspects of the workload that introduce
privacy concerns.

Hyper-Up Calls (Provider Delegates to Tenant) Another
promising approach is to allow tenants to run probes within
the provider infrastructure to collect limited information [3],
for example, using eBPF. Although this allows for a signif-
icant amount of information to be safely exposed, within
the AI context the hardware (i.e., infinity band networks and
GPU) which provide less opacity and fewer primitives limit
the ability to safely employ such techniques. Alternatively, the
provider could collect and expose such data. A key challenge
here, as with the former, is understanding sufficient context
to expose appropriate data.

Provider APIs (Tenant Delegates to Provider) The last
approach is to use Provider APIs [2, 6], to leverage provider
infrastructure to collect and store appropriate telemetry. This
approach enables configurability which tackles the context
issues, but still gives providers the freedom to select most
efficient methods to collect and potentially share methods.

Our approach builds on the final approach with tenants
delegating to the provider. In particular, our system builds
on this specific point in the design space for several reasons:
first, the opacity of many vendor implementations requires
various probing strategies which may be obscured by layers of
vulnerability and underlying infrastructure redundancies (e.g.,
multipath information is nontrivial to infer externally); second,
learning and building models requires significant number of
runs which will be prohibitively costly; lastly, observability is
extremely costly and resource intensive streamlining within
the provider results in savings due to reuse.

There are several key challenges: first, as discussed be-
fore information about the workloads both software versions,
progress reports, and operators are crucial for diagnosis. How-
ever, simply sharing this information directly can expose com-
pany secrets. Thus, there is a need for a privacy preserving

approach to sharing “archetype” information without directly
exposing business logic. Even with all the appropriate context,
there is a challenge in building statistical models, dealing with
novel versions, and minimizing overhead. Next, we discuss
our solution and the components.

5 PHAROAH SOLUTION SKETCH
In this work, we assume a public multi-tenant cloud setting
in which there is organizational division between the tenants
(i.e., data scientists / ML engineers) who write and design
the ML-applications and provider (i.e., platform engineers)
who owns and manages the cloud infrastructure. As illus-
trated in Section 3, this division creates a knowledge gap
which makes it challenging to fully understand infrastructure
components and analyze reliability issues (e.g., job failures).
In particular, this gap makes it challenging for a tenant to
diagnose memory/load imbalance issues, spot bottlenecks,
and estimate resource demands, whereas while the provider
can diagnose these issues without context from the tenant’s
workloads, the provider is unable to tell when such issues are
important. While this gulf of information and the challenges
it poses when assessing applications deployed in the cloud
are well explored in traditional cloud settings [1], the remain
under-explored within the context of ML workloads.

As highlighted earlier, a potential solution lies in the re-
liance of modern AI ecosystem on (i) specialized devices (e.g.,
GPUs, TPUs) which account for a majority of the error and
(ii) common ML-libraries (with limited optimizations). The
hardware and software standardization imply that a “bespoke”
framework for capturing observability data will generalize
across various organizations.

Our system, Pharoah, consists of two phase: An offline
phase where benchmarks and historical logs are used to (1)
identify “sub-archetypes” and identify hardware centric con-
texts and (2) learn combinations of “sub-archetypes” and
“context” which always lead to failures (e.g., software ver-
sions relying on features not supported by hardware) as well
as to learn resource usage patterns that more often lead to
eventual failures. During the online phase, Pharoah analyzes
job metadata at start time to perform proactive patterns based
on mismatches, then for jobs without mismatches it continu-
ously monitors to detect signs for gradual degradation patterns
that have a high likelihood of leading to eventual failures.

5.1 Offline Training
In offline training phase, Pharoah uses a combination of sta-
tistical techniques and machine techniques to detect various
workload and hardware characteristics or patterns that corre-
late highly with failures.

Archetypes identification As others have highlighted [20],
the set of computation and communication operators is fixed,

4



Observing AI-Workloads EuroMLSys, 2025

and the use of fixed libraries and optimizations implies that
these operators are combined in a fixed set of patterns, we call
these fixed patterns “archetypes”. One approach to identify
the permutations of these operators is to run existing bench-
marks [18, 20]. We can also analyze production workloads
to infer the specific patterns in which these operators man-
ifest themselves. The former requires access to significant
data and an accurate inference tool. The former allows for
bootstrapping in the absence of production quality data, e.g.,
in a new cloud or for new software versions or hardware
models. Across various software versions, the characteris-
tics of these operators may vary, which implies that simply
focusing on “archetypes” may lead to inaccuracies. To ad-
dress this, we plan to evaluate different software versions
offline and in parallel to further identify clustering of versions
within an archetype that behave similarly – referred to as
“sub-archetypes”.

Context identification While archetypes allow us to ex-
tract patterns and variations within the software aspect of
AI ecosystem, we require a similar method to identify self-
similar hardware and configuration patterns. As other au-
thors [7, 20] have shown, in addition to hardware components,
their configuration (e.g., clock speeds or temperature) signif-
icantly impacts their failure characteristics [7]. Given our
discovery of “sub-archetypes”, we benchmarking different
combinations of hardware and configuration supported by the
cloud provider to identify sets of hardware and configuration
combinations, or contexts, which impose similar reliability
challenges on AI-workloads.

Learned Failure Patterns Pharoah captures the teleme-
try data during the benchmarking phase to detect context
–Pharoah aggregates the failures information. Pharoah ana-
lyzes telemetry after the benchmark is completed and contexts
are defined. Given this data, Pharoah tries to extract failure
patterns.

Although a certain class of failure can be predicted by eval-
uating combinations of archetypes and contexts [20] (e.g.,
mismatch between operators and capabilities exposed by
hardware contexts), due to infrastructure-level parallelisms
many infrastructure-related errors occur as a result of a build-
up over many iterations – essentially AI-workloads degrade
gracefully into failures.

Pharoah takes an ensemble approach to tackling these chal-
lenges: For the mismatch, Pharoah uses statistical techniques
to identify archetypes and contexts that are causality related to
failures. For this, we plan to explore causality techniques, e.g.,
QED. Alternatively for the graceful degradation scenarios we
plane to explore survival theory and to learn memory, network,
and compute related build-up patterns by injecting various
classes of hardware failures while training sub archetypes
(Figure 4).

Figure 4: Pharoah’s Failure Pattern Learning.

Figure 5: Workflow of Pharoah.

5.2 Online Phase
Online (Figure 5), tenants submit their job and job characteris-
tic in a privacy-preserving manner (i.e., signatures) to Pharoah
before starting jobs. Pharoah immediately alerts them to an
obvious mismatch between sub-archetypes and hardware con-
texts. For workloads that do proceed, Pharoah monitors for
signs of gradual degradation and when detected confirms with
specialized tests.

Privacy Preserving Information Exchange The goal of
this project is to determine the root cause of a crash, then
given this root cause, to identify components that need to be
replaced/avoided or to determine if additional resources are re-
quired to make forward progress on a job. As discussed earlier,
within the cloud setting, this is challenging because of visibil-
ity issues. To help analyze and diagnose challenges that arise
due to common components, we introduce a set of signatures,
software, and hardware signatures. We envision an offline
step which runs various permutations of ML-tool chains to
create check sums (or signatures) the potential computation
patterns and analyzes the hardware to also create appropriate
checksums. These checksums can help identify differences
between the training setup and the production setup which
could be the cause of performance issues. Ideally, for each
signature, our framework learns a recipe of production data to
collect to sufficiently understand resource bottleneck and al-
low for comparisons between runs to detect issues. In an ideal

5



EuroMLSys, 2025 Theophilus A. Benson

scenario, such checksums can be used across infrastructures
and ML pipelines. A key challenge is minimizing the number
of check sums. At one extreme each server configuration can
have its own checksum; this would allow for detection of
specific combinations that are unfit. Yet, at another extreme,
each GPU version can have its own checksum while this is
less precise — it may be more appropriate, as most errors are
centered on GPUs. With regard to software, checksums can
be created on the basis of combinations of versions or com-
binations of unique code paths. As with hardware, the more
precise reduces the potential to learn and generalize, whereas
less precise may decrease ability to easily disambiguate.

CrossValidations Tests For the gradual degradation, where
failure is uncertain, we run micro-benchmark [12, 20] ex-
plicitly designed to test specific resources to determine if
infrastructure degradation is in fact occurring.

6 DISCUSSION AND OPEN QUESTIONS
Next, we briefly discuss open research challenges.

How to detect meaningful software change? A key as-
pect of Pharoah is the discovery of “sub-archetypes”. Ideally,
every software version presents a candidate for a new “sub-
archetype”; however, given the frequency of changes, such
an approach does not scale. A more intuitive approach is to
explore a combination of program language techniques (e.g.
slicing or concolic execution) to identify changes that impact
lines associated with realizing operators logic. An orthogo-
nal approach is to use existing benchmarks [18, 20] in new
versions to identify differences in operator behavior.

How to identify meaningful information for context?
As others have indicated [8, 8, 11, 19], not all configuration
options are equally relevant or impact performance equally.
At the scale of a large cloud provider [7, 17], we can build
on classical feature selection to identify key configuration
parameters. We plan to investigate different techniques such
as these to reduce the dimensionality of configuration required
to define “contexts”.

How to bootstrap for newer software and hardware ver-
sions? Given the rapid evolution, a challenge lies in learning
new context and “sub-archetypes” for emergent hardware or
software. We plan to explore ways to short cuts the learn-
ing process by running large-scale benchmarks, e.g., Super-
Bench [20], on emerging components to detect and learn new
patterns, contexts, and archetypes.

How to deal with untruthful providers? Intuitively, proac-
tive diagnosis can potentially reduce cloud provider revenues
by reducing the amount of time each tenant spends diag-
nosing problems. However, we note that such a system pro-
vides providers with an alternative revenue stream – similar

to Google Cloud’s Observability [5, 6] or Amazon’s Cloud-
Watch [2]. Alternatively, we can explore extensions of cloud-
centric privacy-preserving anomaly detection techniques [4]
to Pharoah.

7 RELATED WORK
The most closely related work explores a change from manual
diagnosis of AI workloads to automated root cause detection
and failure detection [12, 20]. Our approach differs in several
ways: first, we focus on a public multi-tenant cloud which
requires some level of cooperation. Second, we explore a
multipronged approach which aims to preemptively detection
configuration and placements related failures when possible;
however, when not possible, to proactively identify workloads
which exhibit patterns of failure. Previous work either takes
a reactive approach [20] or aims for a purely preemptive
approach [12].

Orthogonal work in this space highlights [9, 20] various
sources of resource and energy waste due to inefficiencies,
variability, and failures in LLM workloads, recent research
of efficiency / reliability is often manual and ad hoc [13,
20] or focused specifically on specific resources (e.g., net-
works [17]): we lack systematic and automated frameworks
to collect and identify sources of inefficiencies and failures in
public clouds.

Although there is a rich literature on multi-tenant public
clouds diagnosis [10, 15, 16] – these works often focus on
traditional workloads. While our work is inspired by the vari-
ous points in the design space explored by these approaches,
our solution is explicitly tailored to the unique characteristics
of AI workloads compared with traditional workloads.

8 CONCLUSION
Multi-tenant clouds provide small-medium enterprises and
startup with a path toward AI (LLM and DL) training and
inference. However, lack of expertise and information about
infrastructure often force them to incur additional costs while
manually debugging job failures. In this work, we present
a vision for automated and proactive detection of failure or
preemptive signaling when proactive detection is not possible.

The cornerstone of our approach lies in the standardiza-
tion of AI software (e.g., pytorch, CUDA) and hardware (e.g,
NVIDIA GPUs) stacks, which enables the identification of
key patterns that generalize across various proprietary AI-
based workloads. We believe that our insight generalizes
beyond diagnosis and can enable a broad set of optimiza-
tions (e.g., enhancing core libraries will benefit all users)
and efficiency algorithms (e.g., designing bespoke tracing
frameworks will be broadly applicable across organizations).

6



Observing AI-Workloads EuroMLSys, 2025

REFERENCES
[1] A. Agache, M. Ionescu, and C. Raiciu. Cloudtalk: Enabling distributed

application optimisations in public clouds. In G. Alonso, R. Bianchini,
and M. Vukolic, editors, Proceedings of the Twelfth European Con-
ference on Computer Systems, EuroSys 2017, Belgrade, Serbia, April
23-26, 2017, pages 605–619. ACM, 2017.

[2] Amazon. Amazon cloudwatch. https://aws.amazon.com/cloudwatch/.
[3] N. Amit and M. Wei. The design and implementation of hyperupcalls.

In 2018 USENIX Annual Technical Conference (USENIX ATC 18),
pages 97–112, Boston, MA, July 2018. USENIX Association.

[4] B. Arzani, S. Ciraci, S. Saroiu, A. Wolman, J. Stokes, G. Outhred, and
L. Diwu. {PrivateEye}: Scalable and {Privacy-Preserving} compro-
mise detection in the cloud. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 797–815, 2020.

[5] D. B. G. Cloud. Google stackdriver is now generally available for
hybrid cloud monitoring, logging and diagnostics. https://cloud.google.
com/blog/products/gcp/google-stackdriver-generally-available//.

[6] G. Cloud. Google cloud’s observability. https://cloud.google.com/
products/observability?hl=en.

[7] Y. Deng, X. Shi, Z. Jiang, X. Zhang, L. Zhang, Z. Zhang, B. Li, Z. Song,
H. Zhu, G. Liu, F. Li, S. Wang, H. Lin, J. Ye, and M. Yu. Minder: Faulty
machine detection for large-scale distributed model training, 2024.

[8] S. Duan, V. Thummala, and S. Babu. Tuning database configura-
tion parameters with ituned. Proceedings of the VLDB Endowment,
2(1):1246–1257, 2009.

[9] A. et al. The llama 3 herd of models, 2024.
[10] V. Harsh, W. Zhou, S. Ashok, R. N. Mysore, B. Godfrey, and S. Baner-

jee. Murphy: Performance diagnosis of distributed cloud applications.
In Proceedings of the ACM SIGCOMM 2023 Conference, pages 438–
451, 2023.

[11] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu. Starfish: A self-tuning system for big data analytics. In Cidr,
volume 11, pages 261–272, 2011.

[12] Q. Hu, Z. Ye, Z. Wang, G. Wang, M. Zhang, Q. Chen, P. Sun, D. Lin,
X. Wang, Y. Luo, Y. Wen, and T. Zhang. Characterization of large
language model development in the datacenter. In 21st USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 24),
pages 709–729, Santa Clara, CA, Apr. 2024. USENIX Association.

[13] Z. Jiang, H. Lin, Y. Zhong, Q. Huang, Y. Chen, Z. Zhang, Y. Peng,
X. Li, C. Xie, S. Nong, Y. Jia, S. He, H. Chen, Z. Bai, Q. Hou, S. Yan,
D. Zhou, Y. Sheng, Z. Jiang, H. Xu, H. Wei, Z. Zhang, P. Nie, L. Zou,
S. Zhao, L. Xiang, Z. Liu, Z. Li, X. Jia, J. Ye, X. Jin, and X. Liu.
Megascale: scaling large language model training to more than 10,000
gpus. In Proceedings of the 21st USENIX Symposium on Networked
Systems Design and Implementation, NSDI’24, USA, 2024. USENIX
Association.

[14] A. Kokolis, M. Kuchnik, J. Hoffman, A. Kumar, P. Malani, F. Ma,
Z. DeVito, S. Sengupta, K. Saladi, and C.-J. Wu. Revisiting reliability
in large-scale machine learning research clusters, 2024.

[15] L. Li, X. Zhang, S. He, Y. Kang, H. Zhang, M. Ma, Y. Dang, Z. Xu,
S. Rajmohan, Q. Lin, et al. Conan: Diagnosing batch failures for
cloud systems. In 2023 IEEE/ACM 45th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP),
pages 138–149. IEEE, 2023.

[16] H. Nguyen, Z. Shen, Y. Tan, and X. Gu. Fchain: Toward black-box
online fault localization for cloud systems. In 2013 IEEE 33rd Inter-
national Conference on Distributed Computing Systems, pages 21–30.
IEEE, 2013.

[17] K. Qian, Y. Xi, J. Cao, J. Gao, Y. Xu, Y. Guan, B. Fu, X. Shi, F. Zhu,
R. Miao, C. Wang, P. Wang, P. Zhang, X. Zeng, E. Ruan, Z. Yao,
E. Zhai, and D. Cai. Alibaba hpn: A data center network for large

language model training. In Proceedings of the ACM SIGCOMM 2024
Conference, ACM SIGCOMM ’24, page 691–706, New York, NY,
USA, 2024. Association for Computing Machinery.

[18] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C. Wu,
B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka, C. Cole-
man, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S. Gardner,
I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar, D. Lee,
J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius, C. Os-
borne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao, F. Sun,
H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada, B. Yu,
G. Yuan, A. Zhong, P. Zhang, and Y. Zhou. Mlperf inference bench-
mark. CoRR, abs/1911.02549, 2019.

[19] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic data-
base management system tuning through large-scale machine learning.
In Proceedings of the 2017 ACM International Conference on Manage-
ment of Data, pages 1009–1024. ACM, 2017.

[20] Y. Xiong, Y. Jiang, Z. Yang, L. Qu, G. Zhao, S. Liu, D. Zhong, B. Pinzur,
J. Zhang, Y. Wang, J. Jose, H. Pourreza, J. Baxter, K. Datta, P. Ram,
L. Melton, J. Chau, P. Cheng, Y. Xiong, and L. Zhou. SuperBench:
Improving cloud AI infrastructure reliability with proactive validation.
In 2024 USENIX Annual Technical Conference (USENIX ATC 24),
pages 835–850, Santa Clara, CA, July 2024. USENIX Association.

7

https://aws.amazon.com/cloudwatch/
https://cloud.google.com/blog/products/gcp/google-stackdriver-generally-available//
https://cloud.google.com/blog/products/gcp/google-stackdriver-generally-available//
https://cloud.google.com/products/observability?hl=en
https://cloud.google.com/products/observability?hl=en

	Abstract
	1 Introduction
	2 Background: Problem Context
	2.1 ML Training Pipelines
	2.2 Personas and Roles in AI Training
	2.3 Deployment Models: Public Versus Private Cloud

	3 Empirical Characteristics
	3.1 Faults at Scale
	3.2 Management Lessons

	4 Design Space
	5 Pharoah Solution Sketch
	5.1 Offline Training
	5.2 Online Phase

	6 Discussion and Open Questions
	7 Related Work
	8 Conclusion
	References

