
Diagnosing and Resolving Cloud Platform Instability
with Multi-modal RAG LLMs

Yifan Wang
wangyifan@cs.cornell.edu

Computer Science Department, Cornell University
Ithaca, NY, USA

Kenneth P. Birman
ken@cs.cornell.edu

Computer Science Department, Cornell University
Ithaca, NY, USA

Abstract
Today’s cloud-hosted applications and services are complex
systems, and a performance or functional instability can have
dozens or hundreds of potential root causes. Our hypothe-
sis is that by combining the pattern matching capabilities
of modern AI tools with a natural multi-modal RAG LLM
interface, problem identification and resolution can be sim-
plified. ARCA is a new multi-modal RAG LLM system that
targets this domain. Step-wise evaluations show that ARCA
outperforms state-of-the-art alternatives.

CCS Concepts: • Software and its engineering→ System
administration; • Information systems → Information
retrieval; • Computing methodologies → Knowledge
representation and reasoning.

Keywords: Root cause analysis, RAG LLM, AI-Ops

ACM Reference Format:
YifanWang and Kenneth P. Birman. 2025. Diagnosing and Resolving
Cloud Platform Instability with Multi-modal RAG LLMs. In The 5th
Workshop on Machine Learning and Systems (EuroMLSys ’25), March
30–April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3721146.3721958

1 Introduction
Incident response in complex systems entails 4 steps. (1)
Detection, which includes the detection or prediction of an
impending problem; (2) Triage: categorizing severity and
assigning the task to a Site Reliability Engineering (SRE)
team; (3) Diagnosis: collecting more data and pinpointing the
root cause; (4) Mitigation: Formulating and carrying out a
response and disabling any extra instrumentation that was
activated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1538-9/25/03
https://doi.org/10.1145/3721146.3721958

Decades of work has given us a remarkable range of AI-
assisted IT-Operation (AI-Ops) tools covering each step, such
as prediction-based anomaly alarming, classification-based
internal support ticket assigning tool for triaging, root-cause
analysis tools using language models for summarization and
many more. These AI tools work on a variety of data modali-
ties, including user-provided bug reports in natural language,
system logs in a semi-structured language and numerical
performance metrics.

Our work takes the next step by offering an AI-Ops solu-
tion that can carry out cross-modality reasoning. The task is
challenging for several reasons: multi-modal language mod-
els are still in an a very early stage, and there is a lack of
a significant lack of high-quality training data sets for our
setting. To the extent that one can identify public data sets
for AI-Ops and IT-Ops they generally offer just a single data
mode, as is the case for the two most widely cited sets, HPC4
[15], COM2 [18]. But this issue is also seen with less widely
used data sets.

Even if we limit ourselves to a single data mode, existing
AI-Ops solutions turn out to have limitations (such as weak
support for events characterized by evolution of a problem
over time, and hence recognizable only from a series of log
records), and also struggle to adapt to changes in their oper-
ating environment. If the underlying data distribution shifts,
for example after a hardware upgrade, the performance of
threshold-based incident detection tool is often found to de-
grade. Upgrades often result in logging new information,
yet small modifications in the log formatting can defeat log
analytics implemented with regular expressions. As a result,
users of today’s solutions complain about frequent forced
code changes and the need for periodic model retraining.
Beyond these technical limitations, today’s AI-Ops tools

are often proprietary and forbiddingly expensive. DevOps
teams at cloud computing companies with vast GPU deploy-
ments can train new models, but this is out of the question
for smaller companies.
ARCA is an AI for Root Cause Analysis based on a mul-

timodal RAG (Retrieval-Augmented Generation) approach,
in which an LLM is augmented by a database. Many RAG
systems are limited to approximate search in document or
image collections, but ARCA also supports data in struc-
tured (tabular) collections and logs. The basic idea is to focus
on recurrent incidents, looking for similar past problems,

139

https://orcid.org/0009-0004-6747-2229
https://orcid.org/0000-0003-2400-149X
https://doi.org/10.1145/3721146.3721958
https://doi.org/10.1145/3721146.3721958


EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Wang et al.

summarizing prior findings, and recommending mitigation
strategies that succeeded in the past.

A complicating factor is that users often report incidents
in fuzzy ways, which limits label quality: a particular prob-
lem given that many AI-Ops tools are trained using labeled
data. Rather than battling this reality, our work focuses on
approximate match (an idea familiar in text-based contexts),
but generalizes the mechanism to to encompass data modal-
ities other than text. The idea, though, is similar: RAG LLMs
for search document collections treat each query as a vec-
tor database search for documents “similar” to the query.
ARCA treats the multimodal signature of the incident as
a kind of query and performs approximate match against
precomputed signatures from past incidents.

Here we report on a proof-of-concept that supports three
data modes: (1) incident descriptions, in natural language; (2)
logs of semi-structured text generated by automated report-
ing components; and (3) multivariate performance-counter
time-series. ARCA is an end-to-end tool created from off-the-
shelf ML models, and designed to cover incident response
steps from triaging new cloud incidents to generating mitiga-
tion plans for the SREs. The ARCA multimodal RAG search
mechanism (Sec. 3) is an original contribution of our effort.
The future ARCA will expand these data modes and enlarge
ARCA’s multimodal pattern-matching capabilities.

To test the end-to-end effectiveness of ARCA, we created
a data set of 800 bug reports collected from micro service
systems in a controlled environment. The bug reports are
typical Bugzilla incident reports of the kind users employ to
request issue resolution. Each contains three components: 1)
the user’s incident description; 2) a log file collected from the
docker container of the faulty service and 3) a time sequence
of performance metrics collected from the same container
during the the fault. Although the bugs have very different
features, all trace to root causes associated with three widely
recognized cloud computing issues: computations that ex-
ceeded time limits, memory leaks and network delays. In the
evaluation, ARCA achieves 92% accuracy in triage and 72%
accuracy in finding the correct mitigation plan. We have also
tested the efficacy of individual components in ARCA using
established data sets.

2 Related Work
Before we dive into details we review related work that
shapes our thinking.

2.1 Retrieval Augmented Generation
The RAG paradigm is in widespread use [5, 11]. In this ap-
proach, a query is first transformed into a vector represen-
tation and an approximate nearest neighbor search is then
used to fetch relevant documents from a knowledge base.
The retrieved content is then provided as auxiliary input to
a generative model, typically an LLM. This extra “context”

allows the model to ground its outputs in factual, up-to-date,
or domain-specific information, reducing hallucinations and
offering a way to continuously update the knowledge base
without retraining models. RAG is effective for question an-
swering [9], summarization [10], and code generation [16],
and has been shown to significantly improve LLM perfor-
mance and interpretability. Prior work on multimodal RAG
has focused on the visual domain (text used to describe im-
ages). In ARCA, however, we need a RAG system specially
for IT-Ops/AI-Ops. To the best of our knowledge, our work
is the first to explore this form of multimodality.

2.2 Prompting and Reasoning
Prompt engineering is central to RAG LLM design. One
prompting technique, few-shot learning [1], leverages the
in-context learning capabilities of LLMs, guiding models
from structure and examples in the prompt (without updates
to model weights). A second, Chain of Thought [21], takes
a further step by structuring the prompt in a way that en-
courages step-by-step reasoning. This has been shown to
improve LLM performance on tasks requiring multi-step log-
ical inference, arithmetic, or complex decision-making. In
combination these two techniques achieve state-of-the-art
performance across various domains including mathemat-
ics, common-sense reasoning, and question answering. We
adopt both in ARCA.

2.3 AI-Ops
ARCA is also inspired by prior work in AI-Ops [2], no-
tably for processing logs and telemetric data. LogCluster
[13] introduced techniques for clustering log records to as-
sist in bug detection using a weighted encoding, and subse-
quent work used LLMs to summarize abnormalities in logs
[20, 24].We used labeled log records from one of these efforts,
LogHub[23], for our evaluation.
We noted our interest in combining application instru-

mentation with text records from logs. Prior studies have
explored aspects of this question, notably by using deep
neural networks for anomaly detection in multivariant time-
series data. For example, Microsoft has proposed an anomaly
detector based on Convolutional Neural Network (CNN) [17],
while Alibaba describes an encoder-decoder architecture in
RobustTAD [4] and Tencent used a VAE network [7] for the
same purpose.
Detecting anomalies in cloud platforms using telemetric

performance data requires handling potentially noisy high-
dimensionaldata. Li et al. (2024) have explored this problem
and proposed a methodology for noise-tolerant self- super-
vised learning [14] that combines tensor decomposition with
self-supervised learning to capture relevant features and
identify anomalies in time series data. For tabular data, the
anomaly detection technique described in [12] shows that
LLMs can detect anomalies by converting data into text and
directing the models to find outliers. That effort went on

140



Diagnosing and Resolving Cloud Platform Instability with Multi-modal RAG LLMs EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

to optimize performance by fine-tuning open-source LLMs
using synthetic data. In contrast, existing AI-Ops tools (in-
cluding those we cited) have generally been limited to a
single data modality.

3 How does ARCA work?
ARCA runs in two phases (Fig. 1): building the multimodal
knowledge base of historical bugs and then querying it. Be-
low we focus on a bug tracking use case, but the idea gener-
alizes to other incident-analysis scenarios.

3.1 Building Phase
To deploy ARCA, we first collect and process data from
existing solved bugs retrieved from bug tacking tools and
then use the collected data to form a knowledge base. After
creating the knowledge base, users can query ARCA for new
and ongoing incidents, and the system will automatically
generate a mitigation plan for each SRE.

3.1.1 Data Sources. We assume that software incidents
are reported through tickets in a bug-tracking system such
as Bugzilla. Each bug ticket contains multiple data modali-
ties, e.g., bug descriptions (natural language), performance
metrics (time sequences of numerical multi-variant data),
logs (semi-structured machine-generated event reports), etc.
In ARCA, we strive to find a mitigation plan by reasoning
across the different modes of data.

A bug tracking system works like an online bulletin board
similar to Reddit. Progress towards resolving bugs is tracked
as follow-up posts to the original post initiated by the staff
member who found the incident. To collect data to form a
knowledge base, we keep our attention to the following steps
within the life cycle of a bug ticket: (1) The first post, which
includes a textual description of the problem. (2) The ticket
assignment post, which reflects the judgment of a human
triage specialists and has a fixed format. (3) Data collection
posts with attachments: these are often data collected by the
SRE team using tools they found relevant and is the step
at which ARCA can learn from data modalities other than
natural language. (4) The last post: the last post of a closed
ticket is usually the diagnosis of the issue and the following
mitigation. Notice that each category of posts and data hints
at a its own similarity metric: rather than a single metric for
all types of data, we need a unified metric spanning multiple
modalities and robust against missing data (some reports
may cite data that other related reports omit).

3.1.2 Build A Multi-modal Knowledge Base. With the
logs, performance metrics and bug descriptions retrieved
from the prior step, we can build a knowledge base that as-
sociates related information. The idea behind the knowledge
base is to do up front work so that later, we can quickly find

similar bugs by comparing their logs and telemetric data dur-
ing a triage step and then rapidly retrieve the corresponding
bug descriptions to help create a mitigation plan.

An important design choice in ARCA is to use search aug-
mentation to improve answer quality instead of storing the
potential answers in the LLM parameters via a technique
such as fine-tuning or training "Expert Heads" in a Mixture
of Experts (MoE) models. We adopted search augmentation
because creating a knowledge base, similar to creating a
database, is much less resource-intensive than LLM training.
Search augmentation additionally leaves us the freedom to
update the knowledge base as information evolves; in con-
trast, pretrained models are rigid and hence unable to learn
dynamically without some form of fine-tuning (which would
often require resources on the same scale as were used dur-
ing the original model tuning procedure). One drawback this
decision is that it can increase latency, but we will show that
ARCA is rapidly responsive and fully suited to interactive
exploration of puzzling anomalies by SRE teams.
To enable fast similarity search among logs instead of

directly searching the text space of the logs, ARCA maps
(embeds processed log snippets to a high-dimensional latent
space: the embedding space. The system will later use cosine
similarity to quantify the difference between two log snip-
pets. Calculating cosine similarity only involves calculating
the product of two matrices, which can be carried out at
very high speeds, particularly with the help of a GPU. The
task is much quicker than searching in the text space. To fur-
ther accelerate the similarity search on very large data sets,
ARCA uses approximate K-nearest neighbors to organize
the log embeddings in two tiers. To find the most similar
log embeddings, we first look for the closest centroids. The
assumption is that these event clusters will contain the em-
beddings most relevant to the incident report. We then use
cosine similarity again, but now include performance met-
rics in our approximate similarity test. To enable this we first
convert the performance metrics to a vector during our log
preprocessing step by aligning the telemetric data of variant
lengths and sources. Then, we store the vector in the knowl-
edge base and via the bug id, can we associate it with other
pieces of information collected from the same bug.

ARCA keeps bug descriptions in natural language because
they may contain important details that stood out to the
human observer of the issue and hence are likely to be of
high value to the tasks performed out by the Evaluation
LLM in later steps. Additionally, bug resolution descriptions
contain mitigation plans which proved effective in the past,
and the Generator LLM can use those to propose a new plan
to mitigate the ongoing issues.

ARCA’s embedding space contains 3072-dimensional vec-
tors of 32-bit floating point numbers, and we embed the
logs using the "text-embedding-3-large" model from OpenAI.
The preprocessed performance metrics are represented as
21-dimensional vectors of 32-bit floating point numbers. The

141



EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Wang et al.

Figure 1. ARCA workflow in its building and query phases.

knowledge base in ARCA is made of 3 object stores, with
one for each of the log embedding, vectorized performance
metrics and bug descriptions. We also maintain a mapping
relationship between them. In the future we plan to allow
dynamic additions to the database, but the PoC works with
a static data set.

3.1.3 Process Log Files. ARCA supports two data modal-
ities: logs of semi-structured text and bug descriptions con-
taining human inputs in natural language. We preprocess
the logs prior to improve the accuracy of ARCA’s triage
technique.
The logs we consider are created by a variety of applica-

tions and systems services, and take the form of text files in
which system maintenance messages, warnings and errors,
anomaly notations, and other reporting can be intermixed.
After examining the log files in our evaluation data set, we
have found that

1. A relatively small subset of log lines are relevant to
any given incident.

2. Log records of a given type are formatted in similar
ways. For example, heartbeat messages for the same
component only differ in their timestamps.

3. For any single incident, a log may contain multiple
relevant data modalities: text, tabular data, time-series
data, etc.

ARCA filters log contents by retrieving the bugs that show
a "similar pattern" in logs in the query step. To keep the LLM
focused on important features, it is important that the log
contents visible to the LLM be relevant to the issues flagged
in the problem report, and free of irrelevant information
if that information might be of value for maintaining the
system or other purposes. Accordingly, we run a Feature
Extraction LLM that we configure to remove repetitious con-
tent and extract data that distinguishes each record from the
others occuring at the same time, like the error messages,
special events, performance metric readings, etc. We addi-
tionally convert all the data modalities that we encounter

Figure 2. t-SNE (t-distributed stochastic neighbor embed-
ding) of the embedded log content. The x- and y-axes show
the coordinates in the t-SNE embedding space.

to text. Length considerations precluded reproducing the
prompt here, but we do include it as Appendix A, Fig. 5.
To assess the efficacy of this log preparation approach

we processed 800 log files from our data set using OpenAI’s
gpt-4o as the Feature Extraction LLM. First, we generated
embeddings from the raw log content with no preprocess-
ing. Then, we preprocessed the logs and embedded only the
filtered and aggregated outputs of the Feature Extraction
LLM. We used t-SNE [8] to project the high dimensional
embedding space to a 2-D image while maintaining rela-
tive Euclidian distances. Doing so yielded the images seen
in Fig. 2, where each dot represents an embedding. As we
can see, the embedding of processed logs (the right picture)
resolves more clearly, showing a cleaner clustering pattern
with far fewer clusters than for the raw log (the left picture):
evidence that this step achieved its goals. We additionally
colored the dots in both images to signify root cause labels.
As we can easily see, the dots from the same root cause,
i.e., memory, CPU and network, are correctly clustered after
preprocessing but were jumbled before doing so. Especially
interesting are the green dots, for incidents in which a mix
of CPU and memory issues simultaneously caused degraded
system performance. These green data points are correctly
located between the clusters for CPU issues and those for
memory issues.

142



Diagnosing and Resolving Cloud Platform Instability with Multi-modal RAG LLMs EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

3.1.4 AlignTelemetricData. To enable a similarity search,
it is necessary to convert telemetry data to a fixed length
vector. Raw data can be highly platform-specific: a matrix
with one row per time stamp and a column for each perfor-
mance counter (CPU utilization, memory utilization, etc),
but potentially with missing data due to faults and timeouts,
idiosyncratic formats and units, and including hardware-
specific metrics. To overcome these issues, ARCA focuses
on a set of 7 docker performance counters, all of which are
commonly available when diagnosing cloud microservice
incidents. These track CPU and memory utilization, network
I/O, block device I/Os, average operation latency, and socket
errors. Servers are highly heterogeneous, hence raw values
are not directly comparable. Accordingly, we calculate the
normalized first order gradient, the average value and the
standard deviation for each time series. In this way, we can
convert the matrix of performance counter readings to a
vector of 21 floating point numbers.

3.2 ARCA-PoC Phases
ARCA-PoC runs in two sub-phases: the query phase and
the generating phase. In the query phase, we interrogate
the populated knowledge base by carrying out the similarity
search on log embeddings and vectorized performance met-
rics. This phase is analogous to the triage step and the output
are the textual descriptions of similar bugs. The descriptions
are then sent to the generating phase to create a mitigation
plan for the SREs.

3.2.1 Query Phase. Once our knowledge base has been
populated, ARCA performs an approximate match query us-
ing posts associated with a new incident as its query prompts.
The methodology used to extract the relevant aspects of the
incident is quite similar to the one used to build the knowl-
edge base, and yields an embedding vector that we can un-
derstand as an abstract representation of the new incident
in the knowledge space. Our goal is to perform an approx-
imate nearest neighbor (ANN) search. We do this in two
steps: first, we identify cluster centroids closest to the query
embedding, and then within those clusters perform a search
for known prior incidents with similar characteristics. Here,
ARCA departs slightly from common RAG approaches that
only retrieve the top tens of documents based on the similar-
ity score. Instead, ARCA retrieves the top hundreds of bugs
as reported from the similarity search. This is because ARCA
treats similarity search as a triage step for the purpose of
coarsely categorizing a bug by placing it within a family of
issues so that corresponding SREs can chime in. For example,
if a bug seems to be CPU-related, it could be assigned to SREs
working on performance issues, ones working on scheduling,
and ones investigating disruptions associated with locking.
With just a small number of approximate matches we might

miss some relevant categories, but with hundreds of approx-
imate machines, we have a high likelihood of routing the
issue to all SREs that might have insight into the issue.
From the bugs with similar log patterns, we additionally

perform a second-round KNN search in the high-dimensional
space of the vectorized performance metrics. Here, an issue
of cost arises: our work uses OpenAI language-generation
APIs that are billed on a per-use basis. Accordingly, we only
use one tenth of our prior report candidates for generation
of the bug explanation hypotheses that the developer will
be shown. In the evaluation, we will show that this step of
filtering will not hurt the overall accuracy.
In ARCA, we use FAISS library [19] to carry out the sim-

ilarity search so that it will run on GPU accelerators. We
have tried to retrieve from top 100 bugs to top 500 bugs and
we can reach a triage success rate as high as 92%. We will
discuss the effect brought by different number of retrieved
bugs in evaluation section.

3.2.2 Generating Phase. In the generating phase, we first
use an Evaluation LLM to find the bug whose description
most closely fits each incident. We pass the description of the
bug fix (which contains the mitigation plan) to the Generator
LLM, which in turn produces text explaining the choice and
suggesting a new mitigation plan to the SREs. The approach
is similar to a concept sometimes referred to as LLM-as-a-
judge [22] (the corresponding prompt details are included in
Appendix A, Fig. 6). To improve accuracy, we employ a Chain
of Thought prompting style (Appendix A, Fig. 7), using a
series of similar CoT prompts in accordance with standard
practice in few-shot learning. The output of this step is the
closest resolved bug. We then prompt the Generator LLM
with the input shown in Fig. 8. An additional benefit brought
by using LLM-as-a-judge is that we can ask the evaluating
LLM to explain how and why it reached certain conclusions,
either in summary form or even as a sequence of step-by-
step decisions, allowing the SREs to better understand the
results and hence increasing confidence in its coverage. Were
ARCA to operate in a single step, it would have more of a
black-box feel that SREs might distrust.

Our design is human-centric: ARCA generates mitigation
plans and reports them to SREs for final review, together
with illustrative data drawn from any similar incidents it
found. We are not considering direct intervention by ARCA
at this time, in part because some privileged commands (like
restarting critical services) require privilage escalation and
should not occur without close scrutiny and Dev-Ops (hu-
man) approval. A benefit is that ARCAs ability to identify
similar prior incidents may be helpful to SREs even if its
proposed mitigation plans are flawed. To obtain recommen-
dations with a natural tone and style, ARCA uses gpt-4o for
both the evaluating and generation LLM stages.

143



EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Wang et al.

4 Experimental Results
To evaluate our work, we first build a data set for 800 bug tick-
ets containing descriptions, logs and performance metrics.
Then we build ARCA’s knowledge base using 700 bug tickets,
saving 100 to use when testing the PoC’s performance.

4.1 Data Set
Our data set of bugs arising in micro service systems is
typical of modern cloud infrastructures. To keep our data set
as general as possible, we keep our attention only to the bug
features reported from the docker container, including the
docker logs and the performance metric readings from the
"top" command, without any application-level features.
We use a micro-service workload generator, "DeathStar"

[3] to run different micro-service applications, like "Hotel-
Reservation", "SocialNetwork", etc. As the application exe-
cutes, we inject errors. To load the CPU, we modified the
benchmark so before processing a new request, the applica-
tion performs a CPU-intensive operation. We also increase
the number of requests per second during runtime until the
application crashes from overload. To simulate a memory
leak we modify the benchmark by introducing a memory
allocation in the call back function but intentionally not
freeing the memory. Finally, to increase network delays, we
introduce a random sleep in the call back function. To make
the challenge harder, we have introduced a fourth category
of error that causes both a memory leak and a long-running
computation, resulting in two possible crash types.
Each of the four categories of injected errors are used to

create 100 experiments, which we diversify by tweaking set-
tings. We run each experiment twice so that we can use the
data set we can automatically label an experiment run with
its closest bug, which is the run generated from the same ex-
periment configuration, yielding 4*100*2=800 bug incidents.
For each bug, we use gpt-4o to generate a human readable
bug report. In the generating prompt, we have provided the
root causes like "the issue is caused by a random delay in
every invocation of the call back function X" to ensure that
the bug report contains meaningful mitigation plans. We
have also instructed the LLM to decribe the bug by summa-
rizing the performance metric readings and the logs. We thus
obtain 800 bug tickets that contain the bug descriptions with
mitigation plans, the time-series of performance metrics and
the logs.

To evaluate the efficacy of our similarity search in the log
embedding space, which is the key of the RAG system, we
use public data sets from four supercomputing systems: BGL,
Thunderbird, Liberty, and Spirit [15].

4.2 End-to-end Evaluation
We first study the effect of using different numbers of nearest
neighbors reported from the similarity search module. This
is also the size of the output from the triage step. So we

Figure 3. Accuracy of ARCA-PoC. The x-axis represents the
output size of the similarity search. The left y-axis shows
the triage accuracy, while the right y-axis shows the system
accuracy.

compare both the triage accuracy and the system accuracy.
For a triage operation to be accurate, ARCA needs to include
the closest bug in the output of the triage steps. For the whole
system to be accurate, ARCA needs to pick the labeled closest
bug as the output of the Evaluation LLM. The results are
shown in Fig. 3. To account for the randomness introduced
by the LLMs, we evaluated the average performance on 300
queries for each setting and for each query, we repeated the
experiment for 3 times.
In our test, we increase the log similarity search output

size from 100 to 400, and we filter out 20% of the chosen
bugs in the similarity search using telemetric data. As we
can see, triage accuracy increases steadily with the raise of
the triage set size. However, the overall system accuracy
drops when we increase the similarity search size from 300
to 400. Upon inspection we found that when the similarity
search size is small (less than 200), the right answer is not
presented in the input prompt. This ceases to be an issue
with larger set sizes. Interestingly, however, although triage
accuracy at set size 400 is significantly higher than that for
size 300, overall system accuracy drops: the Evaluation LLM
apparently becomes overwhelmed by choices.
It’s also worth noting that we cannot increase the simi-

larity search output size without limit. GPT-4o, the LLM we
use for our Evaluation LLM, has a context window size limit
of 30,000 tokens and the input cannot be longer than that.
This token window limit corresponds to a triage output set
size of slightly more than 400.

We also evaluated time and financial cost per query. Gpt-
4o uses a decoder-only neural network structure and hence
the longer the input in tokens, the more time it will take
to generate an answer. Also, OpenAI charges clients on the
basis of the number of tokens computed. Taking all these
considerations together, we arrive at the results shown in
Fig. 4. As we can see, for large group size, generation is
significantly slower and cost mounts substantially.

144



Diagnosing and Resolving Cloud Platform Instability with Multi-modal RAG LLMs EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Figure 4. Cost analysis of using ARCA-PoC. The x-axis
represents the output size of the similarity search. The left
y-axis shows the average cost of a single query in US cents,
while the right y-axis shows its average time consumption.

4.3 Evaluation of Similarity Search
There are two similarity search steps in ARCA, with one in
the high-dimensional space of log embedding and the other
in telemetric encoding. We have evaluated the efficacy of
each step against the combined performance, and reported
the results in Table. 1, where we pick the triage size to be 300.
The key finding is that multi-modal similarity search saves
time and money relative to approaches that require one by
one searches across modes followed by a human integrative
activity.

Data Modes Accuracy Cost (cents) Time (s)
Telemetric Data Only 0.34 2.81 4.67

Log Only 0.72 2.31 4.16
Telemetric Data + Log 0.74 2.89 4.89

Table 1. Comparison of the efficacy via utilizing different
modes of data.

4.4 ARCA as A Log Clustering Tool
Very similar to log clustering tools, ARCA’s RAG-LLM based
log processing module can be used alone to detect anomalies
in logs. In our evaluation, we use public log data sets reported
from 4 supercomputing labs and report the results in Table.
2. The numbers before ’/’ are from ARCA and the one after
are the state-of-the-art numbers reported in [6, 20], which
are achieved through proprietarily fine-tuned LLMs. From
the results, ARCA-PoC outperforms on all data sets despite
requiring only off-the-shelf embedding LLMs.

5 Conclusions and Future Work
ARCA is awork in progress, but already confirms the promise
of the multimodal RAG LLM approach to searching the

Data Set F1-Score Recall Precision
BGL 0.995/0.976 0.99/0.982 1/0.970

Thunderbird 0.984/0.97 0.975/0.99 1/0.97
Spirit 0.993/0.992 0.986/0.999 1/0.984
Liberty 0.986/* 0.986/* 0.986/*

Table 2. Evaluation of using ARCA-PoC as a log clustering
tool. *: For the Liberty data set, public baseline data is not
available.

complicated incident report databases that arise when trou-
bleshooting cloud-hosted applications. In work still under-
way, we are investigating other possible ways to organize the
ARCA knowledge base, including the option of using simi-
larity search algorithms beyond the form of cosine similarity
used in the ANN step. We expect that this will be needed as
we expand the data modality coverage of the ARCA platform
to include performance metrics and traces. Synthesis of gen-
erated answers that incorporate observations from multiple
modalities raises especially interesting questions for study.

Acknowledgments
We would like to thank Tiancheng Yuan for his insight on
RAG LLMs and Miles Bramwit for his efforts on data col-
lection. We are also grateful for support we received from
Siemens, NVIDIA, Cisco and Microsoft.

References
[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, and et al. 2020. Language Models are Few-
Shot Learners. arXiv:2005.14165 [cs.CL] https://arxiv.org/abs/2005.
14165

[2] Qian Cheng, Doyen Sahoo, Amrita Saha, Wenzhuo Yang, Chenghao
Liu, Gerald Woo, Manpreet Singh, Silvio Saverese, and Steven C. H.
Hoi. 2023. AI for IT Operations (AIOps) on Cloud Platforms: Reviews,
Opportunities and Challenges. arXiv:2304.04661 [cs.LG] https://arxiv.
org/abs/2304.04661

[3] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Christina Delimitrou, and et al. 2019. An Open-Source Benchmark
Suite for Microservices and Their Hardware-Software Implications
for Cloud & Edge Systems. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Providence, RI, USA) (ASPLOS ’19).
Association for Computing Machinery, New York, NY, USA, 3–18.
https://doi.org/10.1145/3297858.3304013

[4] Jingkun Gao, Xiaomin Song, Qingsong Wen, Pichao Wang, Liang
Sun, and Huan Xu. 2021. RobustTAD: Robust Time Series Anomaly
Detection via Decomposition and Convolutional Neural Networks.
arXiv:2002.09545 [cs.LG] https://arxiv.org/abs/2002.09545

[5] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi,
and et al. 2024. Retrieval-Augmented Generation for Large Language
Models: A Survey. arXiv:2312.10997 [cs.CL] https://arxiv.org/abs/
2312.10997

[6] Hongcheng Guo, Jian Yang, Jiaheng Liu, Jiaqi Bai, BoyangWang, Zhou-
jun Li, Tieqiao Zheng, Bo Zhang, Junran peng, and Qi Tian. 2024. Log-
Former: A Pre-train and Tuning Pipeline for Log Anomaly Detection.
arXiv:2401.04749 [cs.LG] https://arxiv.org/abs/2401.04749

145

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2304.04661
https://arxiv.org/abs/2304.04661
https://arxiv.org/abs/2304.04661
https://doi.org/10.1145/3297858.3304013
https://arxiv.org/abs/2002.09545
https://arxiv.org/abs/2002.09545
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2401.04749
https://arxiv.org/abs/2401.04749


EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Wang et al.

[7] Tao Huang, Pengfei Chen, and Ruipeng Li. 2022. A Semi-Supervised
VAEBasedActive AnomalyDetection Framework inMultivariate Time
Series for Online Systems (WWW ’22). Association for Computing
Machinery, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3485447.3511984

[8] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale
similarity search with GPUs. arXiv:1702.08734 [cs.CV] https://arxiv.
org/abs/1702.08734

[9] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell
Wu, Wen tau Yih, and et al. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. arXiv:2004.04906 [cs.CL] https://arxiv.
org/abs/2004.04906

[10] Philippe Laban, Alexander R. Fabbri, Caiming Xiong, and Chien-Sheng
Wu. 2024. Summary of a Haystack: A Challenge to Long-Context LLMs
and RAG Systems. arXiv:2407.01370 [cs.CL] https://arxiv.org/abs/
2407.01370

[11] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, and et al. 2021. Retrieval-Augmented Gen-
eration for Knowledge-Intensive NLP Tasks. arXiv:2005.11401 [cs.CL]
https://arxiv.org/abs/2005.11401

[12] Aodong Li, Yunhan Zhao, Chen Qiu, Marius Kloft, Padhraic Smyth,
Maja Rudolph, and Stephan Mandt. 2024. Anomaly Detection of Tabu-
lar Data Using LLMs. arXiv:2406.16308 [cs.LG] https://arxiv.org/abs/
2406.16308

[13] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei
Chen. 2016. Log Clustering Based Problem Identification for Online
Service Systems. In 2016 IEEE/ACM 38th International Conference on
Software Engineering Companion (ICSE-C). 102–111.

[14] Lijun Sun Man Li, Ziyue Li and Fugee Tsung. 2024. Robust Self-
Supervised Deep Tensor Decomposition for Corrupted Time Series
Classification. In Anomaly Detection with Foundation Models. Jeju,
South Korea. https://adfmw.github.io/ijcai24/index.html

[15] Adam Oliner and Jon Stearley. 2007. What Supercomputers Say: A
Study of Five System Logs. In 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’07). 575–584.
https://doi.org/10.1109/DSN.2007.103

[16] Md R. Parvez, Wasi U. Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2021. Retrieval Augmented Code Generation and
Summarization. arXiv:2108.11601 [cs.SE] https://arxiv.org/abs/2108.
11601

[17] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang,
Xiaoyu Kou, Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. 2019. Time-
Series Anomaly Detection Service at Microsoft. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (KDD ’19). ACM, 3009–3017. https://doi.org/10.1145/
3292500.3330680

[18] Bianca Schroeder and Garth A. Gibson. 2007. Disk Failures in the Real
World: What Does an MTTF of 1,000,000 Hours Mean to You?. In 5th
USENIX Conference on File and Storage Technologies (FAST 07). USENIX
Association, San Jose, CA. https://www.usenix.org/conference/fast-07/
disk-failures-real-world-what-does-mttf-1000000-hours-mean-you

[19] Laurens v. d. Maaten and GeoffreyHinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9, 86 (2008), 2579–2605.
http://jmlr.org/papers/v9/vandermaaten08a.html

[20] Yuqing Wang, Mika V. Mäntylä, Jesse Nyyssölä, Ke Ping, and Liqiang
Wang. 2025. Cross-System Software Log-based Anomaly Detection
Using Meta-Learning. arXiv:2412.15445 [cs.SE] https://arxiv.org/abs/
2412.15445

[21] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian
Ichter, Denny Zhou, and et al. 2023. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]
https://arxiv.org/abs/2201.11903

[22] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhang-
hao Wu, Ion Stoica, and et al. 2024. Judging LLM-as-a-judge with

MT-bench and Chatbot Arena. In Proceedings of the 37th International
Conference on Neural Information Processing Systems (New Orleans, LA,
USA) (NIPS ’23). Curran Associates Inc., Red Hook, NY, USA, Article
2020, 29 pages.

[23] Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R. Lyu.
2023. Loghub: A Large Collection of System Log Datasets for AI-
driven Log Analytics. In 2023 IEEE 34th International Symposium on
Software Reliability Engineering (ISSRE). 355–366. https://doi.org/10.
1109/ISSRE59848.2023.00071

[24] Yichen Zhu, Weibin Meng, Ying Liu, Shenglin Zhang, Tao Han, Shimin
Tao, and Dan Pei. 2021. UniLog: Deploy One Model and Specialize it
for All Log Analysis Tasks. arXiv:2112.03159 [cs.NI] https://arxiv.org/
abs/2112.03159

146

https://doi.org/10.1145/3485447.3511984
https://doi.org/10.1145/3485447.3511984
https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2407.01370
https://arxiv.org/abs/2407.01370
https://arxiv.org/abs/2407.01370
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2406.16308
https://arxiv.org/abs/2406.16308
https://arxiv.org/abs/2406.16308
https://adfmw.github.io/ijcai24/index.html
https://doi.org/10.1109/DSN.2007.103
https://arxiv.org/abs/2108.11601
https://arxiv.org/abs/2108.11601
https://arxiv.org/abs/2108.11601
https://doi.org/10.1145/3292500.3330680
https://doi.org/10.1145/3292500.3330680
https://www.usenix.org/conference/fast-07/disk-failures-real-world-what-does-mttf-1000000-hours-mean-you
https://www.usenix.org/conference/fast-07/disk-failures-real-world-what-does-mttf-1000000-hours-mean-you
http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/2412.15445
https://arxiv.org/abs/2412.15445
https://arxiv.org/abs/2412.15445
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.1109/ISSRE59848.2023.00071
https://doi.org/10.1109/ISSRE59848.2023.00071
https://arxiv.org/abs/2112.03159
https://arxiv.org/abs/2112.03159
https://arxiv.org/abs/2112.03159


Diagnosing and Resolving Cloud Platform Instability with Multi-modal RAG LLMs EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Appendix A: LLM Prompts

Received 11 February 2025; accepted 25 February 2025; revised 7
March 2025

Figure 5. Prompt for LLM to process log file.

Figure 6. Prompt for the Evaluation LLM.

Figure 7. The CoT contexts for the Evaluation LLM.

Figure 8. Prompt for the Generator LLM.

147


	Abstract
	1 Introduction
	2 Related Work
	2.1 Retrieval Augmented Generation
	2.2 Prompting and Reasoning
	2.3 AI-Ops

	3 How does ARCA work?
	3.1 Building Phase
	3.2 ARCA-PoC Phases

	4 Experimental Results
	4.1 Data Set
	4.2 End-to-end Evaluation
	4.3 Evaluation of Similarity Search
	4.4 ARCA as A Log Clustering Tool

	5 Conclusions and Future Work
	Acknowledgments
	References

