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Abstract
This paper analyzes the performance impact of unified vir-
tual memory (UVM) while running large deep learning (DL)
workloads on a GPU with limited memory capacity. Due to
the page fault handling overhead of UVM, DL frameworks
have not officially supported UVM. However, given the ris-
ing GPU price, the global semiconductor shortages, and the
ever-increasing DL model size, we cannot optimistically rely
on adding more GPUs for DL processing. Various other solu-
tions such as compression and quantization reduce memory
footprint at the cost of performance and accuracy. Using
UVM with memory oversubscription could tackle such con-
cerns. However, UVM has not been actively leveraged in DL
computing due to its performance overhead. In this study,
we investigate the performance impact of UVM for DL com-
puting to better understand the benefits and limitations. Our
results show that while UVM enables training large models
beyond GPU capacity, its effectiveness depends on the in-
terplay between oversubscription factors and memory man-
agement strategies. We find that PCA significantly mitigates
page fault overhead, improving performance at moderate
oversubscription levels, but also increases migration traffic.
These findings highlight the potential of integrating UVM
with advanced memory management strategies to optimize
DL workloads on limited-memory GPUs.

CCS Concepts: • Computingmethodologies→Machine
learning; Parallel computing methodologies; • Com-
puter systems organization → Parallel architectures.

Keywords: GPU, UnifiedVirtualMemory, PerformanceAnal-
ysis, DNN, LLM
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1 Introduction
Deep learning (DL) models have become the flagship applica-
tion for general-purpose graphics processing unit (GPGPU)
computing, driven by the growing prevalence of AI technolo-
gies. The memory requirements of emerging DL workloads
are enormous and continue to increase alongside the rapid
evolution of AI. For instance, Meta’s latest large language
model (LLM), Llama-3, contains 405 billion parameters [14],
demanding approximately 1.9 TB of GPU memory [37]—a
5.8× increase compared to its predecessor, Llama-2, which
has 70 billion parameters [38]. However, NVIDIA’s state-of-
the-art GPU, the H100, offers only 80 GB of device mem-
ory [7], the same capacity as the previous generation [5].
This significant gap between the demands of modern AI
workloads and the limitations of device memory underscores
the urgent need for improved memory designs to address
performance bottlenecks in GPU computing.

To address the challenge, several solutions have been pro-
posed, such as multi-GPU parallelism [20, 25, 30, 43], data
offloading to the host memory [19, 24, 27, 41], intermediate
result recomputation [13, 32, 33, 40], and memory compres-
sion and quantization [12, 22, 26, 42]. While these methods
mitigate the problem to some degree, they require a deep
understanding of the individual workloads or expensive mul-
tiple GPUs, and more importantly remain constrained by the
GPU memory capacity.
On the other hand, NVIDIA’s Unified Virtual Memory

(UVM), which provides on-demand memory migration and
eviction between CPU and GPU memories, effectively ex-
pands GPU memory to larger CPU system memory. Thus,
UVM could be synergistically integrated with the aforemen-
tioned approaches to further mitigate the memory capacity
issues. However, its page-fault-based data transfer is known
to cause a significant performance overhead [29, 36]. Re-
cent studies showed better performance with hand-tuned
memory management over UVM [21, 36].

However, most of them did not exploit the full capacity of
UVM. First, earlier studies considered zero to limited (e.g., up
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to 1.5 - 2×) memory oversubscriptions. However, a more se-
vere memory oversubscription becomes more practical given
the recent efforts from both industry and academia about
disaggregated memory systems. Most recent technologies
(e.g., CXL) focus on CPU memory expansion by integrating
multiple disaggregated memory devices. The memory space
of accelerators including GPUs could be indirectly enlarged
through CPU’s expanded memory. In such disaggregated
memory platforms, GPUs could run huge applications with
severely oversubscribed memories. However, recent studies
evaluate up to 2× oversubscription. Also, existing DL studies
using UVM mostly leveraged object-level tensor allocations.
However, modern DL frameworks such as PyTorch and Ten-
sorflow support an advanced memory management method
(namely PyTorch Caching Allocator (PCA)) to reduce the
memory allocation and deallocation overheads for tens to
hundreds of tensors. A large chunk of GPU memory is allo-
cated as a shared memory pool, where tensors are mapped
and unmapped to and from the pooled memory without sep-
arate GPU memory allocations and deallocations. The pool
size increases gradually as more tensors are allocated up
to the entire GPU device memory capacity. There has not
been a study that leveraged PCA for DL computing, which
potentially limits the performance of UVM.
In this paper, we aim to provide insights into the perils

and opportunities of adopting UVM at its full capacity for
DL computing. We break the boundary of the pool size by
integrating PCA with UVM. As UVM supports memory over-
subscription, technically the pool size can be as large as the
combined memory capacity of CPU and GPU. To the best of
our knowledge, there has not been a study that evaluated the
performance impact of such a huge memory allocation and
dynamic tensor mapping in the context of UVM. We charac-
terize the behaviors of UVM under PCA by comparing them
with more conventional usage of UVM by disabling PCA
and replacing individual tensor allocations and deallocations
with UVM APIs.

The contributions of this paper are as follows.

• To the best of our knowledge, this is the first study,
which provides an in-depth analysis of the UVM per-
formance for DL computing under various memory
oversubscription.

• We analyze the impact of PCA on UVM performance
and compare the performancewith conventional tensor-
level memory management.

• Our results show that PCA effectively reduces the page
fault handling overhead, thereby providing a compa-
rable performance without using UVM when memory
is not oversubscribed. When GPU memory is oversub-
scribed, UVM shows a scalable performance while it
is impossible without UVM.

2 Background
2.1 UVM Architectures
In discrete CPU-GPU systems, the CPU and GPU memories
are physically distinct and connected via the PCI-Express
bus. Data shared between the CPU and GPU must be allo-
cated in both memories and explicitly copied between them
by the program. To ease the programming burden, NVIDIA
introduced Unified Virtual Memory (UVM) in CUDA 6.0,
enabling access to the memory shared by CPU and GPU
using a single pointer [10]. Later, NVIDIA’s Pascal architec-
ture [9]introduced advanced features such as on-demand
migration and memory oversubscription. When GPU appli-
cations allocate data (e.g., using UVM allocation APIs like
cudaMallocManaged), data pages are automatically copied
to GPU memory on-demand when accessed by the GPU ker-
nel. This process is managed by the UVM driver and GPU
Memory Management Unit (GMMU) using page fault han-
dling. Page faults occur when data pages are not present in
the GPU memory, triggering on-demand allocation or mi-
gration. During a memory transaction, the GMMU checks
whether the data page resides in the GPU memory. If not, a
page fault triggers and the UVM driver copies the required
page from CPU memory to GPU memory. Although UVM
facilitates seamless page sharing, this does not always lead
to performance gains due to the latency associated with page
fault handling, including on-demand migrations. To reduce
page fault handling overhead, UVM employs a prefetching
algorithm. Migrations are handled in two coarse-grained
units: 2 MB and 64 KB [16], effectively prefetching multiple
pages for each individual 4 KB page fault. Prefetching occurs
from the host CPU to the GPU. Eviction from the GPU to the
CPU does not use prefetching and instead utilizes a single
migration unit of 2 MB [2].

UVM enables CPUs and GPUs to share a flat virtual mem-
ory system, allowing zero-copy pointer sharing and seamless
data transfers. It also extends GPU memory capacity by uti-
lizing CPU system memory, enabling applications to handle
larger data sets—a concept known as memory oversubscrip-
tion. To support this, the UVM driver evicts the least recently
used (LRU) pages from GPU memory to CPU memory when
space is insufficient for new pages. The severity of memory
oversubscription is often quantified by the oversubscription
factor defined as the ratio of allocated UVM memory to the
available GPU memory [4]. An oversubscription factor of ≤
1.0 indicates no oversubscription, while > 1.0 means over-
subscription, requiring dynamic page evictions. For example,
an oversubscription factor of 1.5 on a GPU with 80 GB mem-
ory means 120 GB is allocated, necessitating frequent page
evictions to accommodate the workload.

2.2 DNN Architectures
DL workloads use Deep Neural Network (DNN) architec-
tures, which include Convolutional Neural Networks (CNNs),
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Table 1. Evaluation Platform

CPU GPU System System
Memory

GPU
Driver

CUDA
Toolkit

Nsight
Systems

Intel(R) Xeon(R)
Gold 5320

NVIDIA A100
80GB PCIe Linux 5.14 128 GB 550.90.12 12.1 v.2023.1.2

Table 2. Evaluated DL models

Model Type Layers Architecture Batch
Size

Memory
Footprint(MB)

AlexNet CNN 8 Convolutional
Full Connected 128 5316

ResNet50 CNN 50 Residual Block 32 15952
ResNet101 CNN 101 Residual Block 32 22588

GPT-2 Transformer 12 Transformer
(Decoder) 8 12008

BERT Transformer 12 Transformer
(Encoder) 16 12350

Whisper
(small) Transformer 12 Transformer

(En/De-coder) 16 9824

Recurrent Neural Networks (RNNs) and Graph Neural Net-
works (GNNs), and Transformers. Due to their architectural
differences, these models exhibit varying strengths across
different tasks. For example, CNNs excel in image process-
ing, while Transformers are mainly used for a wide range of
natural language processing tasks. These architectural and
task-specific differences also lead to distinct computational
and memory behaviors, which are critical considerations for
performance optimization on UVM systems.
CNNs: CNNs [23] typically consist of a combination of

convolutional layers, pooling layers, and fully-connected lay-
ers. Each neuron in the convolutional layers takes multiple
data points from the weights and feature maps and runs the
convolution operation (dot-product). The results are summa-
rized by various activation functions (e.g., ReLU or SigMoid)
and then processed by pooling layers that produce the max-
imum or average value out of the convolution results. The
fully-connect layers are used for producing the final image
classification outputs.
Transformers: Transformers [39], which form the foun-

dation of large language models (LLMs), are composed of a
stack of Transformer blocks, each comprising an attention
layer and a subsequent feed-forward layer, with input embed-
ding layers, and the fully connected task-specific last layers.
The attention layers take multiple input tokens and check
the relations among the tokens in parallel. With the multiple
layers of attention computations, Transformers extract the
most important words from the input sentences and produce
proper answers for various tasks such as question answering
and sentiment analysis.

2.3 Memory Management on Prominent DL
Frameworks

Memory allocation and deallocation are often time-consuming
and resource-intensive. DL workloads, composed of compu-
tational layers and numerous tensors, suffer performance
degradation from frequent calls to cudaMalloc and cudaFree.
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Figure 1. Comparison of GPT-2 performance with and with-
out UVM and memory usage across varying batch sizes.

To address this issue, PyTorch [31] introduced the PyTorch
Caching Allocator (PCA) [3], which leverages a poolingmech-
anism to reduce allocation and deallocation overhead. When
a tensor is created, PCA requests a large memory chunk via
cudaMalloc and allocates a portion to the tensor, storing the
remainder in memory pools. For subsequent tensors, PCA
first checks these pools; if memory is available, it assigns
it to the tensor. Otherwise, it requests additional memory
from the device via cudaMalloc. Instead of releasing mem-
ory with cudaFree, PCA recycles it back to the pools. Over
time, memory usage stabilizes as no additional requests to
cudaMalloc are needed. Users can bypass PCA by setting the
PYTORCH_NO_CUDA_MEMORY_CACHING environment variable,
where tensors are directly allocated and released memory
via cudaMalloc and cudaFree.

While PyTorch focuses on memory pooling through dy-
namic memory allocation, TensorFlow [1] utilizes a slightly
different approach. TensorFlow employs a similar pooling
mechanism but pre-allocates all available GPU memory at
the start of execution, managing it internally. Users can
configure the initial GPU memory allocation size using the
per_process_gpu_memory_fraction variable. This reduces
allocation overhead but may result in inefficient memory
utilization.

3 Methodology
3.1 Evaluation Setup
We collected the characteristics of DL workloads (detailed
in Section 3.2) on a CPU-GPU discrete system described in
Table 1. For each DL workload, we conducted 10 iterations
of training. The oversubscription factor was varied from 1.25
to 10, by assuming a large disaggregated memory platforms.
Note that the disaggregated memory devices are accessed
through PCIe, which could be transparently managed by
UVM as if those are a part of CPU system memory. To enable
UVM support in the PyTorch framework, we replaced calls
to cudaMalloc with cudaMallocManaged. Since PyTorch
does not natively support UVM, the initialization of tensors
with the attribute device="cuda" are frequently handled
via cudaMemcpyAsync by the framework. We retained these
cudaMemcpyAsync operations. Although UVM is convention-
ally designed to eliminate explicit memory copy operations,
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Figure 2. Ratio of page fault handling time with PCA to that
without PCA.

we retained these memory copy APIs to reduce the perfor-
mance overhead due to cold page misses. We applied UVM
to the PyTorch framework using two approaches: pool-wise
(with PCA) and tensor-wise (without PCA). One of the two
options was selected for each experiment by switching the
environment variable PYTORCH_NO_CUDA_MEMORY_CACHING.
To adjust the memory oversubscription factor, we imple-
mented a helper function that allocates a specified amount
of device memory, effectively limiting the available mem-
ory size. This approach is a common method for controlling
the UVM oversubscription factor, similar to techniques used
in many other works [15–17]. Performance statistics were
averaged over three measurements to mitigate the effects
of system variance. UVM-related statistics were collected
using the NVIDIA Nsight Systems profiling suite [8]. We
adjust the batch size to regulate memory usage, maintaining
a substantial memory footprint while ensuring acceptable
execution time.

3.2 Workloads
We tested sixwidely usedDLmodels, comprisingAlexNet [23],
ResNet50 [18] (denoted as RN-50), ResNet101 [18] (denoted
as RN-101), GPT-2 [35], BERT [11], and Whisper [34], de-
tailed in Table 2. The first three models—AlexNet, ResNet50,
and ResNet101—are based on CNN architectures, while the
latter threemodels—GPT-2, BERT, andWhisper—utilize Trans-
former architectures. These models were chosen to repre-
sent a diverse range of workloads, from image classification
and text generation to context understanding and automatic
speech recognition, highlighting the varying computational
and architectural demands across domains.

4 Observations and Analysis
4.1 Overall DL performance with UVM
With the help of oversubscription feature, UVM is the only
developer-agnostic solution for NVIDIA GPUs that enables
deploying large workloads on the GPUs with limited mem-
ory capacity, even with its overheads. As a backend driver
for emerging memory management interfaces (e.g., hetero-
geneous memory management (HMM) [28] and zero-copy
transfer in grace-hopper architectures [6]), UVM is getting
more widely leveraged to enable flexible and seamless data
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Figure 3. Performance under diverse oversubscription fac-
tors.
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Figure 4. Performance under diverse oversubscription fac-
tors without PCA, compared to the baseline with PCA. (Val-
ues > 1.0 indicate that enabling PCA outperforms disabling
PCA.)

transfer between CPU and GPU. Figure 1 shows the perfor-
mance of a transformer model, GPT-2 [35], with and without
UVM, under various batch sizes on the NVIDIA A100. When
the batch size exceeds 80, the original PyTorch framework
without UVM support fails to run GPT-2, resulting in an
Out-of-Memory (OOM) error, which means that we should
use multiple GPUs to run the model. With UVM enabled, the
A100 is capable of training GPT-2 with larger batch sizes,
even when the memory usage surpasses the 80 GB device
memory capacity of the A100. Given the ever-increasing DL
model size and the rising concerns about the affordability of
high-end GPUs, UVM will be a more practical solution for
DL studies.
Interestingly, when the memory is not oversubscribed,

the UVM does not incur significant performance overhead
compared to when UVM is not used, unlike conventional
wisdom. This is thanks to PyTorch’s PCA support, which
significantly reduces page fault handling overhead, as shown
in Figure 2. We will analyze the performance benefits and
penalties newly introduced by PCA in the following sections
in detail.
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Figure 5.Memory usage per kernel over time for various models: x-axis represents kernel invocation IDs and y-axis shows
memory consumption. Red dotted lines indicate iteration boundaries and only the first five iterations of each model are shown.

4.2 Performance under Various Oversubscription
Factors

Figure 3 shows the performance slowdown of the DL work-
loads with and without PCA under diverse oversubscription
factors ranging from 1.25 to 10. With PCA, the average per-
formance slowdown is 7.29× (up to 57.74×), while without
PCA, it is 1.75 × on average (up to 17.85×). When PCA is
enabled, UVM is allocated to the memory pools, and ten-
sor creation requests memory from these pools. Over time,
the memory pools converge to a steady state where no ad-
ditional UVM allocations are required in subsequent itera-
tions. In contrast, without PCA, each tensor directly calls
UVM APIs (e.g., cudaMallocManaged) to request memory
and cudaFree to release it. These operations are repeated in
every iteration. The repeated use of expensive memory op-
erations, such as cudaFree, can become a bottleneck for the
workload, thereby reducing the relative impact of UVM’s per-
formance penalty on overall performance. Notably, AlexNet
experiences a significant performance drop when the over-
subscription factor exceeds 5.0. This is because AlexNet’s
simple model architecture leaves little computation to hide
UVM’s memory access overhead, exacerbating performance
losses. Similarly, Whisper suffers significant performance
degradation when the oversubscription factor exceeds 6.0
due to extensive memory accesses that intensify page thrash-
ing as device memory becomes increasingly constrained.
Although the performance impact without PCA is less

severe compared to with PCA under memory oversubscrip-
tion, enabling PCA still results in better overall performance.
Figure 4 compares the performance of enabling PCA against
disabling PCA under varying oversubscription factors. It
demonstrates that enabling PCA consistently outperforms
disabling PCA on average, although the performance gap
decreases under higher oversubscription factors. Notably,
in cases without oversubscription, disabling PCA is 7.22 ×
slower than enabling PCA on average. These results high-
light that PCA remains an effective memory management
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Figure 6. Number of page faults.

strategy compared to directly using expensive memory APIs,
such as cudaMallocManaged and cudaFree.

Observation 1. LLMs, such as GPT-2 and BERT, bene-
fit more from UVM than simpler CNNs under a high
oversubscription factor, due to intensive computation
overlapping with page fault handling.

4.3 Kernel-wise Memory Requirements
While the performance declines sharply with higher oversub-
scription factors, it is worth noting that the model can still
execute successfully even under extreme oversubscription
conditions (e.g., an oversubscription factor of 10.0). This im-
plies that a GPU is capable of running models that are signif-
icantly larger than its physical memory capacity, effectively
enabling computations that would otherwise seem infeasi-
ble given the hardware constraints. This finding challenges
the conventional wisdom of UVM, which generally recom-
mends keeping the oversubscription factor below 1.25 [17].
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The ability to sustain execution at such high oversubscrip-
tion factors can be attributed to the unique characteristics
of deep learning (DL) model execution. Unlike traditional
workloads, DL models comprise thousands of small com-
putational kernels, each responsible for specific operations
during training and inference. Although the overall mem-
ory footprint of these models can be exceedingly large, the
actual working set required by the vast majority of these
kernels remains relatively small at any given time. Figure 5
shows the memory usage per kernel over time for various
models. It is evident that most kernels consume a very small
amount of memory, and only a small fraction of kernels ex-
hibit a significantly larger memory consumption. Further,
the amount of memory consumed by the largest kernel is
much smaller than the overall memory footprint of the en-
tire model, as shown in Table 2. This observation suggests
a promising opportunity for mitigating GPU memory lim-
itations when deploying large-scale DL models with UVM.
By leveraging this inherent sparsity in per-kernel memory
demands, it becomes feasible to push beyond conventional
oversubscription limits and efficiently execute large models
on memory-constrained hardware.

Observation 2. Despite recommendations to limit the
oversubscription factor to 1.25, our findings show ac-
ceptable overhead even at higher values for DL work-
loads.

4.4 Statistics of Page Faults
4.4.1 Number of Page Faults. To reveal the underlying
performance characteristics and the internal behaviors of
DL workloads on UVM systems, we collected and analyzed
more detailed statistics of UVM behavior. Figure 6 presents
the number of page faults with and without PCA. Figure 6a
shows a sharply increasing number of page faults under
the higher oversubscription ratio, which indicates that the
number of page faults is highly correlated with performance,
and the overhead associated with page fault handling is the
primary bottleneck for performance with PCA. In contrast,
Figure 6b demonstrates a relatively flat trend without PCA.
This flat trend can be attributed to the intensive memory
operations, which dilute the intensity of memory access
under high oversubscription factors.
Though the page faults are less steeply increasing, when

PCA is not used, there are significantly more page faults than
when using PCA. This is because, without PCA, memory is
automatically reclaimed by cudaFreewhen a tensor reaches
the end of its lifecycle. In contrast, with PCA enabled, the
memory associated with a tensor remains resident on the
device even after the tensor’s lifecycle ends. PCA does not
release memory but instead recycles it back into the memory
pools, allowing subsequent output tensors to use it without
incurring write page faults. This finding indicates memory
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Figure 7. Breakdown of page faults caused by read/write
transactions across different oversubscription factors.

pooling mechanism effectively reduces page faults, as the
mapped memory remains accessible for subsequent kernel
executions. This reasoning is strongly supported by the de-
tailed breakdowns of page faults and memory migration
statistics, which will be described shortly.

4.4.2 Breakdown of Page Faults. Figure 7 presents the
breakdown of page faults caused by read and write transac-
tions. When there is no memory oversubscription, all page
faults are caused by write memory transactions because we
retained cudaMemcpyAsync in the PyTorch to reduce cold
page misses, which proactively prefetches all input data into
device memory, eliminating read page faults. However, with
UVM, as the memory space used for output data is mapped
on the GPU memory only when the corresponding pages
are accessed by the GPU, for tensors that store results and
do not require initialization, write transactions on these ten-
sors trigger page faults and on-demand memory allocation.
As the oversubscription factor increases, the proportion of
page faults caused by read transactions gradually rises. This
is because higher oversubscription factors lead to increas-
ingly constrained device memory, resulting in tensors being
evicted before all their read transactions are completed. Con-
sequently, subsequent read transactions on evicted tensors
introduce read page faults.
Interestingly, with PCA enabled, page faults are more

evenly distributed between read and write transactions com-
pared to cases without PCA. The reason is two fold. One
reason is the efficient memory reuse. With PCA, multiple
tensors can reuse a memory space that is already mapped on
the device memory without releasing and reallocating the
space, which helps reduce write page faults. Another reason
is the delayed eviction. Because tensor memory space is not
released even after their lifetime ends, new tensors that do
not reuse the existing tensor’s memory space will cause page
eviction, which causes more read faults.
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Figure 8. The count of migration transactions across differ-
ent oversubscription factors.

Observation 3. PCA’s pool-based memory manage-
ment effectively reduces substantial page faults. Given
that the main performance bottleneck of UVM is ex-
pensive page faults, pool-based memory management
can be a solution.

4.5 Statistics of Page Migration Transactions
4.5.1 Number of Page Migration Transactions. Fig-
ure 8 plots the number of migration transactions in the unit
of 107 transactions. Unlike the earlier statistics, PCA incurs
almost 2× to 3×more migration transactions than when PCA
is not used. This means that PCA enables more frequent
memory transfer while reducing the page fault handling
overheads. Note that Figure 6 shows that PCA causes only
half the number of page faults than without using PCA. This
is because the PCA reuses the memory space in the pools
used by terminated tensors. These memory spaces are likely
to be already mapped on the device memory. Therefore, only
data contents are copied (migrated) without page faults. Also,
as tensors do not release memory even after their lifetime
ends, PCA causes more evictions, which also contribute to
higher migration transactions.

As discussed in Section 4.4.1, delayed memory reclamation
in PCA reduces page faults by allowing mapped memory
reuse across subsequent kernels. Therefore, under high over-
subscription, more memory migrations are triggered because
of the limited device memory capacity. Despite more migra-
tions, UVM’s intrinsic prefetching and pre-eviction mecha-
nisms [16] remove migration overhead from the critical path.
In other words, PCA trades page fault overhead—always on
the critical path—for migration overhead, thereby mitigating
UVM overhead in DL workloads.
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Figure 9. The size of migrations across different oversub-
scription factors.

4.5.2 Size of Page Migrations. We also measured the
amount of data traffic with and without PCA, as shown in
Figure 9. This result aligns well with the migration trans-
action statistics shown in Figure 8. By incorporating PCA,
we observe an increase in active data transfers while simul-
taneously reducing the number of page faults. Such highly
correlated statistics between the number of transactions and
the amount of data transfer imply that per-transaction traffic
is similar in both cases. This is because of the UVM’s uniform
memory management mechanism; UVM manages memories
in the unit of 2 MB blocks and migrates or prefetches data in
the unit of 64 KB. The results also reveal that the migration
size between the CPU and GPU is remarkably large, high-
lighting the extent of data movement required for execution
under memory constraints. For instance, under an extreme
oversubscription factor of 10.0, AlexNet exhibits a migration
volume that is approximately 200× larger than its total mem-
ory footprint. This suggests that while UVM’s on-demand
migration mechanism simplifies CUDA programming, it also
introduces substantial PCIe traffic overhead. These findings
emphasize the pressing need for optimized UVM manage-
ment strategies to accommodate the growing memory de-
mands of large-scale GPU workloads, particularly for deep
learning models.

Observation 4. PCA trades page fault overhead for
memorymigration overhead. As UVM’s smart prefetch-
ing and pre-eviction mechanisms effectively remove
memory migrations from the critical path, the cum-
bersome page fault overhead of UVM can be tackled
by integrating the UVM with PCA.
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5 Discussions
Our observations challenge several conventional wisdoms
by demonstrating that PCA effectively mitigates the perfor-
mance penalty of UVM, even in cases where GPUs are se-
verely oversubscribed. This finding underscores the potential
of PCA in enhancing UVM’s usability for large-scale work-
loads, particularly in deep learning applications, where mem-
ory limitations are a persistent challenge. The effectiveness
of UVM is further evident in deep learning computing due
to its unique execution model. Deep learning workloads rely
heavily on small computational kernels that execute in rapid
succession, with extensive overlap between computations
and memory transfers, thereby improving UVM’s efficiency.
This behavior is crucial for sustaining performance, even un-
der extremememory constraints. Additionally, UVM’s ability
to seamlessly manage memory transfers between host and
device without explicit user intervention makes it highly
attractive for deep learning researchers and practitioners.

However, a key limitation of UVM is its application context-
agnostic nature, which may not always yield optimal per-
formance. Since UVM is a general-purpose memory man-
agement system, it lacks specialized adaptation for deep
learning workloads. This limitation suggests the need for
further optimization to enhance its efficiency. Therefore, we
encourage the research community to further explore the in-
tegration of PCA with UVM. A deeper investigation into this
combination could enable more scalable deep learning com-
puting without imposing significant programming overhead.
Future work could explore adaptive memory management
strategies that dynamically adjust UVM’s behavior to spe-
cific deep learning workloads, paving the way for improved
GPU memory efficiency in large-scale models.

6 Conclusion
In this paper, we characterize the performance of UVM for
deep learning (DL) computing under severememory oversub-
scriptions and investigate the feasibility of executing large
DL models that would otherwise fail due to memory limi-
tations. We also conduct a thorough analysis of the perfor-
mance impact and behavioral characteristics of UVM when
applied to DL workloads. Our observations indicate that
while pool-based memory management effectively reduces
page faults, it simultaneously increases data traffic, which
can introduce additional performance bottlenecks. These
findings emphasize the opportunities and challenges of us-
ing UVM for DL workloads, especially as models grow in
size and complexity. They highlight the need for advanced
optimization techniques and adaptive memory management
to enhance efficiency and scalability for large-scale deep
learning on GPUs.
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