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Abstract
As AI models grow exponentially in size, memory has

emerged as a critical bottleneck for inference at scale. While

hardware solutions like Compute Express Link (CXL) promises

to solve the problem of memory capacity and sharing, they

require capital investment, and are not widely available. This

paper presents RMAI, an in-kernel remote shared memory

framework tailored for AI inference workloads, offering a

transparent, scalable, and cost-effective software alternative

to hardware-based memory expansion and sharing solutions.

By leveraging the operating system’s capabilities, RMAI in-

troduces dynamic virtual memory regions that reduce page

faults, minimize overheads associated with user-kernel tran-

sitions, and optimize data locality for inference workloads.

In this paper, we particularly focus on Mixture-of-Experts

(MoE) models. In this initial evaluation we demonstrate that

RMAI achieves performance levels comparable to CXL-like

architectures, with up to 10x faster expert switching and

reduced memory management overhead across large-scale

inference tasks compared to disk-based solutions. This work

redefines the role of remote shared memory in AI systems,

positioning it as a practical and high-performance solution

for memory capacity and sharing in modern data centers.

CCS Concepts
• Computer systems organization → Distributed archi-
tectures; • Computing methodologies → Distributed
artificial intelligence; • Networks→ Programming in-
terfaces.
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1 Introduction
The unprecedented scale of Large LanguageModels (LLMs)

has fundamentally reshaped artificial intelligence, creating

critical challenges in memory management and system ar-

chitecture. Models like Google’s Switch Transformer (1.6

trillion parameters) [18], GLaM (1.2 trillion parameters) [15],

and M6-T (>1 trillion parameters) [42] exemplify this growth,

leveraging Mixture-of-Experts architectures to strategically

partition parameters across multiple experts while activat-

ing only a subset for each input [28]. This design achieves

computational efficiency but introduces significant memory

demands during inference, requiring rapid access to massive

parameter sets, far exceeding the capacity of a single node’s

RAM. Parameters not immediately needed are offloaded to

slower memory tiers, such as local storage devices, resulting

in latency overheads that hinder performance [43].

Traditional datacenters with monolithic servers exacer-

bate memory constraints by rigidly coupling CPU and RAM

resources, often leading to low memory utilization (under

40% in Google and 60% in Alibaba) [12, 35, 37] and poor effi-

ciency in HPC [31]. To address this, datacenters are moving

toward disaggregated architectures that decouple compute

from memory [16]. Such designs promise to meet the 2–3×
higher memory requirements of large-scale inference [19, 43]

more flexibly than traditional servers, often relying on RDMA

or CXL for high-speed data access [26, 39].

While GPUs dominate AI training, modern CPUs have

become increasingly viable for AI inference thanks to accel-

erators like Intel’s AMX [2] and ARM’s SME [1], yielding for

example 5–10× gains in quantized inference [5, 32]. CPUs not

only offer ample memory capacity and ease programmability
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but also avoid offloading overheads [34]. As they incorpo-

rate these specialized matrix units and expand bandwidth [7],

CPUs can effectively support large-model inference work-

loads alongside GPUs and accelerators [2, 32, 34].

Memory Expansion. Traditional disk-based memory solu-

tions, even high-performance NVMe SSDs with 7GB/s+ se-

quential throughput and 100-200µs latency, while ubiquitous,

suffer from severe latency and limited bandwidth, making

them ill-suited for inference workloads where performance

depends on rapid data access. When RAM is full, and in-

ference requests require loading parameters from disk, the

resulting bottlenecks drastically degrade performance, ren-

dering the computational power of the system ineffective.

Compute Express Link (CXL) offers the potential for shared

memory pools across nodes, enabling elastic scaling. How-

ever, current deployments face significant challenges. While

direct CXL connections are limited by physical distance (typi-

cally 2 meters), multi-rack deployments are possible through

CXL switch-based topologies. The challenge is that each ad-

ditional switch hop introduces significant latency overhead,

limiting practical scalability in larger deployments. Efforts

to extend direct connection range using optical signaling

remain experimental and introduce signal loss, increased

power consumption, and deployment costs [39]. Efforts to ex-

tend this range using optical signaling remain experimental

and introduce signal loss, increased power consumption, and

deployment costs [39]. Additionally, CXL adoption requires

costly hardware upgrades, with power consumption con-

cerns (2–3W/GB/s) and limited hardware availability further

restricting scalability [39]. While ASIC-based CXL solutions

are now available from several manufacturers, CXL switches

remain extremely limited in the market, with Xconn’s model

being one of the few commercially available options and

difficult to procure. This limited switch availability further

constrains the deployment of large-scale CXL-based memory

pooling solutions [39].

Remote memory accessed via RDMA, on the other hand,

presents a practical and already-deployed alternative that

solves several key issues of memory disaggregation [6, 14,

20]. RDMA offers low latency (1–2 µs), high bandwidth

(25–800 Gbps), and cost-efficient scalability, enabling nodes

to efficiently utilize underusedmemory on othermachines [39].

This approach not only bypasses the limitations of disk-

based solutions but also avoids the infrastructure barriers of

CXL. Despite its established use in memory disaggregation,

RDMA’s potential to address the dynamic memory require-

ments of AI-specific workloads, such as Mixture-of-Experts

(MoE) models, has not been fully explored. By integrating

remote memory with MoE architectures, we propose a novel

solution that leverages the scalability of RDMA to meet the

inference demands of modern AI, while overcoming bottle-

necks inherent to local memory and disk.

Contributions. This paper presents the first analysis of using
remote memory as a faster memory tier than local disk to

cache—and share—AI/ML workload parameters, with partic-

ular emphasis on Mixture-of-Experts architectures. While

remote memory—i.e., swapping in/out memory from/to the

memory of another machine over RDMA—has been studied

before [14, 20, 25, 30] in the context of cloud workloads, the

unique memory access patterns and performance require-

ments of modern AI workloads necessitate a fundamental

rethinking to also enable data sharing among multiple ma-

chines (albeit read-only sharing). Our design is inspired by
the Partitioned Global Address Space (PGAS) model, which
naturally accommodates transparent remote data placement

and direct addressing, allowing multiple machines to refer-

ence shared remote memory without per-object lookups or

complicated directory tables.

Our approach demonstrates several critical advantages

over existing solutions. High Performance: 40% reduction

in total inference time compared to disk-based solution and

10% compare to CXL solution. Low Latency: up to 10× im-

provement in expert loading speed versus disk and up to

2x faster load/unload compare to CXL. High Scalability:

Near-linear performance scaling across distributed nodes.

Improved Compatibility: Seamless integration with existing

AI frameworks.

This work makes several contributions to the field: (1)

a comprehensive analysis of MoE memory access patterns

and associated optimization opportunities; (2) novel remote

shared memory PGAS-like architecture specifically engi-

neered for efficient expert loading; (3) RDMA-based com-

munication protocol optimized for large-scale inference; (4)

extensive evaluation demonstrating performance parity with

hardware solutions while enabling flexible deployment. This

paper presents a first step toward fully realizing transpar-

ent, kernel-level remote memory for MoE. Nonetheless, our

initial results confirm the viability and efficiency of this ap-

proach, laying the groundwork for future advances in large-

model inference.

2 Background

2.1 Modern Datacenter Architecture

Modern datacenters are designed to handle diverse work-

load requirements through a mix of compute-optimized and

memory-optimized nodes. Compute-optimized nodes typi-

cally include AI-enabled processors (e.g., Intel AMX, Arm

SVE) or accelerators like GPUs and TPUs, prioritizing high
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Table 1: Comparison ofMemory and Interconnect Technologies
Technology Cost Availability in Data Centers Latency Bandwidth

DDR4 RAM $6.20–$12.40 per GB Widespread 80–100 ns 208 Gb/s

CXL 1.1Memory $1,860 per 128 GB Limited 245–255 ns 136–208 Gb/s

RDMA $62–$1,240 per 25–800 Gb/s High 1–2 µs 25–800 Gbps

NVMe Storage $496 per 1 TB Widespread 92,000–537,000 ns 36 Gb/s

computational throughput but constrained by limited mem-

ory capacities of 32–64GB due to high costs and power lim-

itations of high-bandwidth memory. Conversely, memory-

optimized nodes feature large memory capacities (384GB–

2 TB)with basic CPUs and are intended for data-heavy tasks [6,

39].

However, these resources are often underutilized due to

the fixedCPU-to-memory ratio inmonolithic architectures [35,

37]. The growing memory demands of AI workloads, such

as inference for large models, exacerbate this inefficiency,

where memory requirements can exceed available RAM.

Network-based memory disaggregation has emerged as a

practical solution. With modern datacenter networks offer-

ing 25–800 Gbps bandwidth, and RDMA capable of sub-2 µs

latencies, remote memory can now be accessed at speeds far

superior to traditional disk-based approaches, which suffer

from millisecond-scale latencies and bandwidth limitations

(see Table 1) [14, 20]. This enables memory-optimized nodes

to serve as high-performance extensions for compute nodes,

reducing costs and improving resource utilization.

2.2 Mixture-of-Experts
Architecture andMemory Demands

Mixture-of-Experts (MoE) models use conditional com-

putation so that only relevant portions of the network are

activated per input. As shown in Figure 1, gating selects

which experts process each token (sparse activation), rout-

ing dispatches tokens across devices via an All-to-All pattern,

and experts run in parallel while typically needing 1–4 GB

each. Because total expert memory can exceed a single de-

vice’s capacity, results are combined according to the gating

decisions to produce the final outputs, demanding advanced

memory management. These frequent expert loads and un-

loads make MoE an ideal use case for remote shared memory

solutions, such as RDMA-based disaggregation, which can

scale beyond local memory limits.

3 Motivation
Current approaches to Mixture of Experts offloading pri-

marily rely on disk-based storage or advanced hardware

solutions such as CXL. However, these methods exhibit crit-

ical limitations: disk-based solutions suffer from high la-

tency and low bandwidth, while CXL remains expensive,

Figure 1: MoE architecture[22]

limited in availability, and confined to within-rack deploy-

ments [11, 27]. Despite these constraints, many datacenters

possess underutilized memory resources on nodes not en-

gaged in high-performance computation. These memory
nodes represent an untapped opportunity for MoE work-

loads, yet no transparent and optimized method currently

exists to harness this resource effectively.

Temporal Locality inMoEWorkloads. Memory access patterns

in MoE workloads exhibit significant temporal locality, as

observed in various studies [11]: (1) 70-80% of expert acti-
vations occur within 100mswindows, indicating bursty
memory demand driven by dynamic input routing. (2) Ex-
pert reuse follows a power-law distribution (𝛼 ≈ 1.5),
with a small subset of experts being accessed disproportion-

ately often. (3) The average expert residency time is 200-
300ms, reflecting rapid memory turnover before eviction

or replacement. These patterns suggest that caching mech-

anisms could mitigate disk-related overheads, yet disk I/O

latencies and limited bandwidth render such solutions unsuit-

able for inference tasks requiring real-time responses [17].

Access Frequency and System Overhead. The dynamic expert

selection in Mixture-of-Experts models results in frequent

expert migration, which introduces substantial overhead to

system performance. Each expert load or unload operation

typically occurs within 50-100ms intervals, as dictated by

dynamic gating decisions that allocate specific experts for

processing based on input characteristics [19, 27]. These

frequent transitions generate high memory management

overhead, including significant page fault activity. For in-

stance, a 4GB expert mapped into memory using standard

4KB pages results in over a million page faults if not mit-

igated by memory management features like Transparent

Huge Pages (THP) [17]. This page fault overhead can severely

delay inference and increase system latency.
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Additionally, MoE workloads require substantial mem-

ory bandwidth during expert loading and unloading, with

transfer rates often reaching 16-32 GB/s, which can strain

performance in systems with limited memory bandwidth [11,

17]. While modern memory systems offer theoretical band-

widths of up to 100 GB/s, high-frequency, bursty access pat-

terns—exacerbated by temporal locality—often cause con-

tention and reduce effective throughput [27]. This memory

contention compounds the latency introduced by disk-based

systems or other lower-bandwidth tiers, further impairing

performance.

Finally, scheduling delays, typically 50-100µs per expert

switch, also add to the system overhead [19]. These delays

arise from the time required to allocate and re-map experts

into memory, manage interconnect contention, and update

metadata structures like TLBs [17, 27]. Together, these fac-

tors make frequent expert migrations a critical bottleneck

in MoE workloads, significantly reducing the computational

efficiency of inference.

Although prior works have proposed techniques like ex-

pert pinning, weight caching, tensor parallelism, and mem-

ory offloading to mitigate these challenges [19, 23], they fail

to fully address the core issue: the dynamic and frequent mi-

gration of expert parameters across the memory hierarchy.

A more robust approach, capable of transparently leveraging

underutilized resources such as remote shared memory, is

promising.

3.1 Operating SystemMemoryManagement
Traditional OS memory management mechanisms strug-

gle to efficiently handle MoE workloads due to frequent

expert loading and unloading. These operations trigger sub-

stantial overhead in terms of page faults, memory fragmen-

tation, and Translation Lookaside Buffer (TLB) pressure, all

of which degrade performance.

Page Fault Overhead. Each time an MoE expert is loaded, the

OS must allocate and map large memory regions, leading to

thousands of page faults per expert if using 4KB pages. With-

out Transparent Huge Pages (THP), loading a 4GB expert

requires approximately 1,048,575 page faults, resulting in a

worst-case delay of 6–12 seconds (at 6–12 µs per page fault)

However, using THP is limited to a set of sizes, such as 2MB

and 1GB. Additionally, since Transparent Huge Pages (THP)

are not available on all systems and require contiguous mem-

ory – which require expensive page migration, their use can

result in extra overheads and inefficient memory utilization.

Impact of Expert Size on System Performance. Our empirical

analysis of the MoE expert inference scenario, in which ex-

perts are loaded from disk—a common pattern in practice[27]

—reveals significant performance implications across differ-

ent expert sizes. This underscores the critical relationship

between expert scale and system overhead. As illustrated

Figure 2: Time Components in Traditional Disk-Based
Expert Loading

in Figure 2, the total processing time exhibits a super-linear

growth pattern as expert sizes increase from 128MB to 8GB,

with the most dramatic impact observed in load/unload op-

erations and computation time.

For smaller experts (128MB-512MB), the system main-

tains relatively balanced performance characteristics, with

total processing times ranging from 0.7s to 2.6s. However,

as expert sizes scale beyond 1GB, we observe a marked de-

terioration in system efficiency. The load/unload time, in

particular, demonstrates concerning growth—from 0.22s at

128MB to 11.01s at 8GB—representing a significant portion

of the total processing overhead. This growth pattern aligns

with our earlier observations regarding memory manage-

ment challenges and page fault activities.

The computational component, while scaling more grace-

fully, still shows substantial increase from 0.43s at 128MB to

15.39s at 8GB. Operating system overheads follow a similar

trend, rising from 0.04s to 1.41s, reflecting the increasing

strain on system resources. Notably, network transfer times

remain relatively modest across all configurations (0.014s to

0.22s), suggesting that network bandwidth is not the primary

bottleneck in current implementations.

This analysis reinforces our motivation for developing

more efficient expert management strategies, particularly for

larger expert sizes where traditional disk-based approaches

show clear limitations. The disproportionate growth in load

and unload times and OS overheads emphasizes the need for

innovative solutions that can better handle the dynamic na-

ture of MoE workloads while maintaining acceptable latency

profiles.

4 Design

To develop a software alternative to CXL for commodity

hardware we focused on two key aspects: (a) transparency,
to enable seamless integration with userspace code; (b) per-
formance, to ensure the proposed solution remains viable in

environments without CXL support. To the best of our knowl-

edge, there is no transparent and performance-optimized

software solution forMoECPU inference. Existing approaches
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introduce either offloading to disk or non-commodity hard-

ware such as CXL when memory is insufficient to store the

MoE model.

Our goal is to provide the userspace application with the

illusion of having the complete model – all experts, at all

times, without requiring to manage or be aware of how the

model data is distributed and handled. To achieve such goal

we envision a PGAS-like approach where experts are placed

in remote memory (that can be locally cached), but at the

same time globally addressable by multiple compute nodes.

Symmetric Unified Virtual Address. To eliminate unnecessary

copying and (de)serialization, a symmetric virtual address is

essential. In this approach, all nodes share a consistent view

of data, enabling direct data transfers between them.

To further enhance efficient data sharingwithin the cluster

particularly for parameter exchange we extended this con-

cept to create a unified virtual address space. This allows all

nodes to directly access each other’s data while maintaining

ownership of their own portions.

AutomaticDataMigrationandDeallocation. In addition, these
applications require access to large memory spaces that ex-

ceed the capacity of a single node’s memory, necessitating

memory distribution or sharding across multiple nodes. This

approach requires efficient mechanisms for data migration.

Furthermore, as individual nodes approach their capacity

limits due to extensive memory access requirements, it be-

comes essential to implement policies for data deallocation.

Two possible strategies exist: providing user-space APIs for

these operations or offloading them to the kernel. The former

increases the complexity of user-space applications, requir-

ing developers to rewrite their code based on the API. Even

after doing so, it introduces additional overhead due to user-

kernel context switches. Therefore, we opted for the latter

approach, automating data migration and deallocation at the

kernel level to ensure transparency and efficiency.

Overall Architecture. As shown in Figure 3 our architecture

comprises of two distinct node types: memory nodes and

compute nodes. Each node holds a dedicated portion of ex-

perts, shared through RMAI. This distributed system creates

the illusion that compute nodes possess the complete model,

while RMAI automatically manages underlying operations

such as data migration and deallocation. Existing PGAS solu-

tions are not transparent and lack these functionalities and

are therefore unsuitable for this scenario. Our design ensures

high compatibility with existing user-space code, requiring

only minimal modifications. Implementation involves simply

replacing the model memory with RMAI-managed memory

before execution.

Page Deallocation Policy. As noted in Section 3, MoE work-

loads exhibit temporal locality, requiring careful page deallo-

cation. To address this, we implemented two key strategies.

First, we maintain multiple copies of hot pages across both

compute and memory nodes, ensuring pages belonging to

frequently accessed experts remain available in compute

nodes and can be retrieved from multiple memory nodes

when necessary. Second, we employ an LRU page dealloca-

tion mechanism to free up less demanding pages associated

with infrequently used experts.

5 Prototype Implementation

We implemented an initial prototype of our design in the

Linux kernel with about 2000 LoC. While we could devel-

oped our prototype starting from an already existing remote

memory project, we decided to started from scratch because

previous projects (a) do not support sharing remote mem-

ory among different machines; (b) do only support page size

granularity (indeed, FastSWAP supports object size, but it is

not transparent).

Coarse-Grained Virtual Memory Regions. The default page
size granularity is often 4096 bytes, which can lead to fre-

quent page faults when working with large models, signif-

icantly impacting performance. To address this, we define

Virtual Memory Regions (VMRs) that exceed 4096 bytes and

are typically multiples of the default page size. Adjusting

granularity through VMRs reduces the number of page faults

and improves network utilization in terms of throughput by

enabling batched message transmission. Additionally, it min-

imizes the number of control messages. However, excessively

large VMRs can introduce challenges in AI workloads, which

are highly multi-threaded. In such cases, multiple threads

may become blocked on the same VMR, leading to underuti-

lized CPU resources.

This limitation justifies why we do not use Transparent

Huge Pages (THP), as their sizes are not configurable, offer-

ing only a few predefined options. Moreover, THP requires

contiguousmemory allocation, which can result in inefficient

memory utilization. To optimize performance, we determine

the ideal VMR size through evaluation, selecting the con-

figuration that achieves the best results for our workloads.

Larger VMRs reduce page faults and improve network uti-

lization by enabling batched transfers. However, they can

also increase CPU idle time, as the processor must wait for

the entire VMR to be transferred before resuming execution.

During our experiments, we found that coarse-grained

VMRs can reduce the number of page faults by up to 80%,

decrease TLB operations by up to 4x, and enable TLB shoot-

down batching. Additionally, it improves network utilization

by up to 3×. These optimizations reduce operating system

overhead and enhance network efficiency.

In-Kernel Implementation. We chose to implement our solu-

tion in the kernel, offloading memory management to kernel
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Figure 3: RMAImemory overview

while allowing user-space to handle computation logic. Im-

plementing dynamic VMRs requires TLB modifications and

PTE access, which are only available at the kernel level.

6 Evaluation
In this section, we provide a detailed evaluation of our

RMAI system, comparing it against traditional disk-based

and CXL-attached memory systems. We analyze the compu-

tation time, memory access overheads, and scalability across

varying expert sizes, explaining each observation thoroughly.

6.1 Experimental Setup
Hardware. Experiments were conducted on two identical ma-

chines located in our Lab. Table 2 summarizes the hardware

configuration used in our evaluation.

Component Specification
CPU Intel Xeon Gold 5418Y (2.0GHz, 24 cores)

Memory 512GB DDR5@ 4800 MT/s

Storage 465.8GB NVMe SSD (WDS500G1X0E)

Network 100GbEMellanox ConnectX-6

CXL Device Samsung CXL 1.1 DRAMMemory Expander (128GB)

Table 2: Hardware configuration used for evaluation.

Software. We run our experiment on Linux kernel 5.15 and

Pytorch version 2.6. The evaluation uses a custom imple-

mentation of a Mixture-of-Experts (MoE) model in PyTorch.

The model incorporates: (1) LRU-based caching to manage

expert access dynamically, (2) RDMA for fetching experts

from remote nodes with minimal latency, (3) PGAS abstrac-

tion to present a transparent unified global memory view, (4)

optimized memory management to handle disk, CXL, and

RDMAmemory tiers seamlessly, and (5) in our PyTorch MoE

implementation, we did not modify the model’s forward or

gating logic to explicitly fetch experts. Instead, we mapped

each expert’s parameters into RMAI-managed virtual mem-

ory via mmap(). Thus, when the model accesses an expert’s

weights, a page fault occurs, and RMAI transparently re-

trieves the data from a remote memory node. This approach

avoids manual syscall invocations in the model code – the re-

mote memory access is completely transparent thanks to the

PGAS abstraction. No explicit data-fetching function is called

from PyTorch; the kernel automatically handles page faults

and fetches required pages remotely. This ensures minimal

modifications to existing AI frameworks.

6.2 Methodology
Three scenarios were evaluated: (1) Disk-Based Memory

(Baseline), where experts are loaded from NVMe storage into

main memory. This incurs high overhead due to storage

stack operations and page faults; (2) CXL-Based Memory,
where experts are loaded from CXL-attached memory. This

reduces I/O latency but retains overheads from data copy-

ing and re-registration; and (3) RMAI (Our System), where
RDMA fetches experts directly from remote memory. RMAI

eliminates re-registration overhead and leverages the PGAS

abstraction for simplified memory management.

6.3 Results and Analysis
Figure 4 illustrates execution times for varying expert sizes

(128MB to 8GB), broken into four components: computation,

load and unload time, OS overhead, and network time. We

discuss those below.

6.3.1 Computation Time. The computation time remains

consistent across all scenarios, measured at approximately

15.39 seconds for 8GB experts. This is expected because all

approaches (disk-based, CXL-based, and RMAI) perform the

forward computation entirely in main memory. Since com-

putation depends only on the data already loaded, it remains

unaffected by the memory architecture.

6.3.2 Load/UnloadTime. The load/unload time shows signif-

icant differences. For disk-based memory, it is 11.01 seconds

for 8GB experts due to high disk access latency and storage

stack overheads, compounded by handling page faults for

each 4KB memory page. In the CXL-based approach, this
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Figure 4: Comparison of execution time components across scenarios for varying expert sizes.

time is reduced to 0.51 seconds (a 95.4% improvement) be-

cause CXL memory bypasses the storage stack. However, the

need for data re-registration and copying into main memory

introduces residual overheads. RMAI achieves the lowest

load/unload time at 0.25 seconds (a 97.7% reduction from

disk-based memory), as RDMA enables direct access to re-

mote memory, eliminating intermediate data copies and re-

registration entirely.

6.3.3 Operating System Overhead. For both disk-based and

CXL-based systems, the OS overhead for an 8GB expert is

1.41 seconds, by page fault handling and data mapping. Disk-

based systems further suffer from storage stack management,

which involves high-level filesystem operations. In contrast,

RMAI reduces the OS overhead to just 0.013 seconds (a 99%

reduction). This is possible because the PGAS abstraction

reduces page faults significantly by treating memory as a

fixed global space.

6.3.4 Network Time. Disk-based and CXL-based systems

exhibit minimal network time (0.22 seconds for 8GB experts)

since they rely on local storage/memory for loading experts

and only use the network to transfer layer outputs in a

pipelined fashion. For RMAI, the network time is higher

at 0.94 seconds due to RDMA operations for remote memory

access. However, this cost is predictable and scales linearly

with expert size. Importantly, the reduction in load/unload

time and OS overheads outweighs the additional network

time, making RMAI the overall superior approach.

6.3.5 Scalability Analysis. The benefits of RMAI become

increasingly apparent as expert sizes grow: For small ex-

perts (128MB–1GB), RMAI achieves a 35.9% reduction in

total execution time compared to disk-based memory. This is

primarily due to the significantly reduction of page fault han-

dling, although the network overhead partially offsets the

gains for smaller experts. For medium experts (1GB–4GB),

RMAI delivers a 39.2% reduction in execution time, with

major improvements stemming from a 93.2% reduction in

load/unload time and a 98.8% reduction in OS overhead. For

large experts (4GB–8GB), RMAI achieves a 40.7% reduction

in execution time, enabled by the PGAS abstraction’s fixed-

location mapping, which eliminates memory management

overheads, and the linear scaling of RDMA network costs.

7 Discussion
While our primary focus has been on CPU inference and

commodity hardware, we believe RMAI could serve as a

high-speed memory tier for GPU inference, particularly in

scenarios where disk speed is a bottleneck[38], CXL memory

is unavailable or of similar or lower performance [40, 41]. By

leveraging RDMA links, RMAI enables faster expert loading,

enhancing GPU performance in such environments. Addi-

tionally, certain training schemes, such as PyTorch FSDP [44],

require synchronizing the model and experts on demand dur-

ing each iteration. Our approach proves particularly useful in

these scenarios, as it enables efficient offloading and transfer

of experts while maximizing the overlap between commu-

nication and computation using VMRs, as discussed in the

design section. Although our implementation was originally

designed for CPUs, we can still leverage them in scenarios

like fine-tuning, which falls under training and where CPUs

are applicable. Therefore, we see our work as applicable to

fine-tuning MoE models using paradigms like FSDP this sug-

gests our work can also generalize beyond mixture of experts

models and can be applied to LLMs in general.

In our prototype solution, we determined the optimal VMR

size by conducting an experiment and running it with the

calculated best size. However, in a full production-ready

implementation, this process needs to be automated. One

approach is to analyze access patterns to dynamically de-

termine the optimal size, or alternatively, we could provide
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System PGAS/DSM Symmetric Unified Kernel-Level Transparent AI/Inference

Infiniswap [20] ✗ ✗ ✗ ✗ ✓ ✗

Leap [30] ✗ ✗ ✗ ✗ ✓ ✗

CFM [6] ✗ ✗ ✗ ✗ ✓(sch.) ✗

GMEM [45] ✗ ✗ ✗ ✓ ✓(dev.) ✗

Hydra [25] ✗ ✗ ✗ ✗ ✓(part.) ✗

LegoOS [37] ✗ ✗ ✗ ✓(disagg.) ✓(part.) ✗

PopcornOS [8] ✓(DSM) ✓ ✓ ✓ ✓ ✗

AIFM [14] ✗ ✗ ✗ ✗ ✗ ✗

SAPS (Actor-PGAS) [33] ✓ ✗ ✗ ✗ ✗ ✗

DRust [29] ✓ ✗ ✓ ✗ ✓(lang.) ✗

RMAI (Ours) ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Comparison of existing remote-memory and DSM/PGAS solutions. (✓= fully, ✗= not, and parenthetical
notes for partial or specialized aspects.)

an API for user space to supply detailed information to our

in-kernel memory manager.

Another research direction for future work is fault toler-

ance. In our proposed solution, each memory node holds a

specific portion of experts. However, to ensure reliability in

a fault-tolerant setting, we need to maintain multiple copies

of experts across different memory nodes or implement a

multi-owner approach. This way, if a node fails, compute

nodes can still access the necessary data, ensuring continued

operation without disruption.

While our experiments focused on a single compute node,

RMAI’s design inherently supports multiple compute nodes

accessing shared memory. In principle, each compute node

could process separate portions of the model (e.g Pipelining

paradigm) or handle different prompts concurrently. This

parallelism could further reduce inference latency by dis-

tributing expert computations across multiple machines.

8 RelatedWorks

Infiniswap [20] and Leap [30] both exploit RDMA to

extend a node’s local memory by paging out to remote ma-

chines, reducing disk overhead. However, these systems fo-

cus on block-level paging rather than providing a global

shared address space, and thus lack built-in support for high-

frequency read-sharing typical in AI inference.

CFM [6] introduces a far memory-aware cluster scheduler

to improve job throughput via remote memory, but it neither

offers a unified address space nor addresses frequent on-

demand expert switching seen in mixture-of-experts (MoE)

workloads. GMEM [45] proposes generalized OS-managed

memory for peripheral devices (e.g., GPUs), yet it does not

provide a partitioned global address space (PGAS) for general-

purpose CPU inference across multiple nodes.

Hydra [25] focuses on resiliency and high availability of

remote memory, mainly via erasure coding and replication,

rather than supporting a symmetric or unified memory ab-

straction for AI-specific workloads. LegoOS [37] similarly

offers a kernel-based disaggregated architecture, but it lacks

a fully transparent, symmetric PGAS that is critical for dy-

namic parameter sharing in MoE models. Similarly, recent

multiple-kernel OSes, like Popcorn Linux [8–10, 24, 36], and

distributed hypervisors [3, 4, 13, 21] do provide a symmetric

and unified memory abstraction that is prone to overheads

as not optimized to AI workloads.

AIFM [14] presents a high-performance user-space de-

sign for far memory; however, it does not integrate with

the OS’s virtual memory subsystem to create a transparent,

system-wide address space. SAPS [33] employs an actor-

based approach to PGAS, but it remains entirely in user space

and requires explicit message-passing constructs, making it

unsuitable for unmodified AI frameworks.

Finally, DRust [29] addresses fine-grained distributed

shared memory through language-level ownership in Rust.

While it eliminates explicit coherence checks, it requires

rewriting applications in Rust and does not introduce a

kernel-level, symmetric address space accessible to arbitrary

processes.

By contrast, our solution—RMAI—combines a kernel-level

PGAS with a symmetric, unified address space, providing

seamless transparency to unmodified applications while ad-

dressing the dynamic memory demands of MoE inference

workloads.

9 Conclusion
While CXL promises to solve at least the memory capacity

and communication overheads problems of today distributed

LLM, this paper demonstrates that at the cost of a memory

optimized server and high-speed networking a MoE model

can run faster than onCXL (up to 10%), and indeed faster than

the baseline (up to 45%) where the experts are on SSD. This is

achievable just by software innovation. That is moving part

of the application software into the kernel, exploiting remote
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memory, transparently, but aware of the size of each expert.

While these are initial results and run without the case of

sharing – we don’t have any CXL switch to compare with, we

hope these results will generate further research in debloat-

ing AI frameworks and moving some of their functionalities

down in the software stack, like in this case.
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