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Abstract
Large Language Models (LLMs) demonstrate exceptional per-
formance across diverse tasks but come with substantial en-
ergy and computational costs, particularly in request-heavy
scenarios. In many real-world applications, the full scale
and capabilities of LLMs are often unnecessary, as Small
Language Models (SLMs) can provide accurate responses
for simpler text generation tasks. When enhanced with ad-
vanced reasoning strategies, such as Chain-of-Thought (CoT)
prompting orMajority Voting, SLMs can approach the perfor-
mance of largermodels while reducing overall computational
requirements. However, these strategies can also introduce
additional energy costs, creating an energy-accuracy trade-
off. Our analysis examines these trade-offs in test-time com-
pute strategies for smaller models compared to larger ones,
using the MMLU benchmark. Additionally, we explore the
input-output token dynamics of transformer architectures,
which result in nonlinear hardware energy operation curves
for LLMs. To bridge AI research with its physical impact,
we propose energy efficiency metrics, including Energy-per-
Token, as complements to traditional accuracy benchmarks.
Beyond model selection, we propose controlled reasoning
in CoT token generation, using operating curves to regu-
late reasoning depth dynamically. This vision integrates a
energy-aware routing mechanism, ensuring that model selec-
tion and inference strategies balance accuracy for sustainable
AI deployment.

CCSConcepts: •Hardware; •Power and energy; • Impact
on the environment;

Keywords: Sustainable AI, LLM Inference, Test-Time Com-
pute Strategies, Query-Routing
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1 Introduction
As AI models become more accessible and integrated into
IT systems, sustainability and computational concerns are
growing. Recent research shows, that the energy demand of
global data centers is projected to reach 1,000 TWh by 2026 1,
fueled in part by the rapid expansion of AI technologies. Ad-
ditionally, related carbon emissions are estimated to account
for up to 8 % of global emissions in the next decade [5]. The
energy demand of Large Language Models (LLMs) are pri-
marily driven by their parametric size and computational
requirements. Neural scaling laws, initially introduced by
Kaplan [11], offered a foundational framework for optimiz-
ing model performance by balancing model parameter size,
dataset scale, and computational power, leading to a constant
model parameter size increasement.
However, these scaling laws often neglect inference, a

phase with different and task-specific computational de-
mands. Research from cloud providers such as AWS and
Google confirms that inference frequently surpasses train-
ing in energy consumption, especially in high-demand, low-
latency applications [22]. Although these frameworks have
guided efficient training practices, only recent work accounts
for the inference demand in the training phase, moving
towards development of Small Language Models [23]. Re-
cent research breakthrough in cost efficient LLM training by
DeepSeek does not necessarily reduce resource consumption
- instead, it often drives greater adoption and usage, known
as the Jevons paradox.[4].

This emphasizes the need to evaluate computing efficiency
during inference alongside traditional metrics like accuracy
[17–20]. One might expect that Energy Consumption per
Token during inference would be consistent for models with
identical parameter sizes. In this paper, we show that they are,
in fact, not: LLMs reveal different energy efficiencies across

1IEA Electricity Report 2024, https://www.iea.org/reports/electricity-2024
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the same tasks on the same hardware. Our key findings in-
clude the following:

• Different LLM architectures have different energy effi-
ciencies in token processing.

• LLM computations are influenced by the transformer-
based autoregressive generation of tokens. These dy-
namics produce characteristic nonlinear energy op-
erating curves over the number of generated tokens
across LLMs.

• Test-time strategies like Chain-of-Thought Prompt-
ing boost accuracy in smaller models but come with
high energy costs, making larger models more energy
efficient in comparison.

Our findings are based on several experiments, detailed
throughout the remainder of this paper. After discussing
the relevant related work in Section 2, we provide a brief
overview of the evaluated LLMs, the datasets, and the bench-
marks used in Section 3. In Section 4, we investigate en-
ergy efficiency of LLM during inference, highlighting how
prompts lead to differences in energy consumption between
models. We further characterize these variations by analyz-
ing the input-output token relationships and their impact
on the hardware energy operating curves. Lastly, in Sec-
tion 5, we propose a routing design balancing accuracy and
sustainability in LLM inference.

2 Balancing Compute in LLM Training and
Inference

Scaling laws provide a structured framework for optimizing
the balance between model size, training data, and computa-
tional resources. Kaplan et al.[11] demonstrated that increas-
ing model size significantly improves performance, shaping
the development of large-scale language models. Building
on this, Hoffmann et al.[8] refined these principles with
the Chinchilla scaling laws, advocating for a proportional
increase in model parameters and dataset size to achieve
optimal training efficiency. While Chinchilla emphasized ef-
ficiency in pretraining, recent models such as LLaMA 2 and
LLaMA 3 have adopted a different strategy, prioritizing exten-
sive training token counts—2 trillion and 15 trillion tokens,
respectively—over major architectural changes [27, 28]. This
shift highlights a trade-off where higher training costs are
offset by reduced inference costs and greater adaptability to
deployment scenarios [23]. Additionally, emerging research
suggests that further refinements to scaling laws may in-
tegrate considerations of both model quality and inference
demands, optimizing LLM designs for specific operational
requirements [23].
Optimizing LLMs requires balancing computational de-

mands between training and inference. While early scaling
approaches focused on maximizing model performance dur-
ing training, recent research extends these laws to consider

inference efficiency [23]. Compression techniques, includ-
ing quantization and pruning, are commonly employed to
mitigate inference costs. Quantization reduces model preci-
sion while maintaining accuracy [9, 16], and pruning elimi-
nates redundant parameters, lowering computational com-
plexity [6, 26]. These techniques enable smaller, more effi-
cient models that preserve performance while reducing re-
source demands. Moreover, advancements in test-time com-
putation, such as dynamic inference optimization, continue
to shape the trade-offs between training and inference ef-
ficiency, pointing to a future where these aspects become
increasingly intertwined [24, 31].
Advances in inference-time optimization improve effi-

ciency without requiring larger models. Chain-of-Thought
(CoT) prompting enables stepwise reasoning, improving per-
formance on complex tasks [34, 35]. Variants such as Major-
ity Voting and Best-of-N further enhance accuracy by gen-
erating multiple responses and selecting the most probable
one [15, 29, 33]. More advanced inference-time strategies dy-
namically allocate computational resources. Beam Search ex-
pands multiple reasoning paths in parallel, selecting the most
probable sequence based on cumulative likelihood. Monte
Carlo Tree Search (MCTS) further refines this by explor-
ing solution paths, evaluating their expected quality, and
backpropagating optimal results [3, 32, 37]. Despite these im-
provements, most studies do not report computational costs
or energy usage during inference, leaving a critical gap in un-
derstanding inference efficiency. The absence of standardized
metrics for inference-time compute further complicates di-
rect comparisons between different optimization techniques.
Transformers, the backbone of LLMs, pose additional com-
putational challenges. The self-attention mechanism scales
quadratically with sequence length, increasing memory and
energy consumption [21, 30]. Sequential decoding exacer-
bates this problem, as token generation requires recurrent
attention to past outputs, leading to significant computa-
tional overhead.
Efforts to improve LLM efficiency extend beyond model-

level optimizations to system-level strategies. Techniques
such as vLLM and Orca reduce inference memory footprints
through continuous batching and paging, improving energy
efficiency [12, 25]. Model partitioning strategies, such as
those implemented in Clover, enhance deployment efficiency
by distributing computational loads [14]. Sustainability-focused
initiatives like Sprout minimize carbon emissions by reduc-
ing generated token counts without compromising answer
quality [13]. By focusing on optimizing both encoding and
decoding processes, these methods contribute to reducing
overall energy consumption in large-scale LLM inference.
However, standardized reporting on energy efficiency re-
mains limited, making it difficult to assess the full impact of
these optimizations [36].
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3 Datasets, Models and Hardware
We focus on studying energy consumption in autoregressive
token generation of different LLM architectures, specifically
analyzing energy per token metrics, equation 1. For our
experiments, we used the datasets MMLU and MT-Bench.
In MMLU, all LLMs generate only a single output token
per query, whereas for MT-Bench, we evaluate the metrics
for token generations to account for varying computational
demands.

• MT-Bench [38]: A dataset for evaluating LLMs in
multi-turn dialogueswith 80 open-ended prompts across
eight domains, including math, coding, and writing.

• Massive Multitask Language Understanding
(MMLU)[7]: The MMLU dataset is a benchmark de-
signed to evaluate the multitask accuracy of language
models. It contains 57 categories spanning a wide
range of tasks, including humanities, STEM, social sci-
ences, and other professional domains. We clustered
those categories into [10]: Computer Science, Math,
Natural Sciences, Economics, Humanities, Health, So-
ciology and Engineering.

All experiments are done on a NVIDIA L40S. For mea-
suring the energy consumption, the python wrapper of the
NVIDIAManagement Library, which is also used in the code-
carbon project [2]. No parallelism is applied. Batching im-
pacts AI inference energy efficiency by defining how many
data samples are processed simultaneously. Larger batches
improve hardware utilization, but for consistency, we set
the batch size to 1 for all models. This ensures fair, reliable
performance comparisons under identical conditions.

4 Evaluating LLM Energy Efficiency
In this section, we analyze the energy efficiency of various
LLMs when processing identical inputs on the same hard-
ware. Our focus is on measuring the energy consumption
of Transformer based LLM architectures during both input
processing and sequential token generation, which we con-
trol by setting a fixed maximum token output. Additionally,
we assess the impact of applied reasoning techniques using
a small language model (SLM), examining their effects on
both accuracy and energy efficiency.
We investigate following research questions:

• RQ1: How does energy efficiency in LLMs differ
for the same input?

• RQ2: How does sequential output token genera-
tion impact energy consumption?

• RQ3: How do test-time compute strategies, such
asMajority Voting and Chain-of-Though Prompt-
ing, affect the trade-off between accuracy and
energy consumption?

For Research Question 1, we assess the efficiency of vari-
ous 7B-parameter LLMs in processing the MT-Bench dataset
while generating a single token, achieved by setting the max
new tokens parameter to 1. For Research Question 2, we
conduct multiple runs to analyze the impact of sequential
token generation on energy consumption. Finally, we apply
Chain-of-Thought reasoning to the 1B LLaMA 3.2 model and
compare its accuracy and energy consumption against the
zero-shot performance of both the vanilla 1B model and the
LLaMA 8B.
The equation 1 Energy Efficiency quantifies the energy

efficiency of a model during the processing and generation
of tokens. The formula is given by:

Energy per Token [Joule] = 𝑊consumed ∗𝑇𝑖𝑚𝑒 (𝑠)
𝑇processed

(1)

• 𝑊consumed ∗𝑇𝑖𝑚𝑒 (𝑠) represents the total energy con-
sumed by the GPU during the entire processing and
generation phase. This includes the power (in Watts)
used by the hardware to process the input data and
generate the corresponding output.

• 𝑇processed is the total number of tokens processed,
which is the sum of both the input tokens (the tokens
fed into the model) and the output tokens (the tokens
generated by the model as a response).

4.1 Energy Efficiency for Input Token Processing
The MT-Bench dataset is utilized for input prompt process-
ing. With the python nvidia management library the energy
consumption of the hardware is measuring and the latency
to process the prompt as well as generate the first output
token. This allows us to isolate the effect of sequential au-
toregression in transformer networks and focus solely on
comparing different architectures for processing the same
input prompts while generating a single output token.

Figure 1. LLMs differ in token processing efficiency
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Figure 2. Non-linear behavior in token processing

Figure 1 visualizes the average energy efficiency of differ-
ent LLMs processing theMT-Bench.We can see that different
architectures of Large Language Models consumed different
amount of energy processing the same input. Extending this
observation figure 2 shows a unique characteristic for each
LLM in processing different lengths of input token. A clear
nonlinear behavior is observable, allowing to fit a function
and to predict how much energy the processing of different
amount of input token could consume.
This evaluation shows that for research question 1: How

does energy efficiency in LLMs differ for the same input? Its
clearly identifyable that each model works with different
efficiencies in input token processing.

4.2 Energy Efficiency for Output Token Generation
In transformer-based language models, token generation is
inherently autoregressive, where each new token is gener-
ated sequentially. As the model generates additional tokens,
the computational complexity increases with each new out-
put due to repeated application of attention layers. This
increased complexity leads to variations in energy consump-
tion in different architectures. In this study, we conducted
an empirical evaluation of several LLM architectures under
identical input conditions but varying numbers of generated
tokens. By analyzing the energy efficiency of these mod-
els, we gain valuable insight into the operational efficiency
and scalability of different transformer architectures during
autoregressive token generation.
Figure 3 illustrates energy consumption as a function of

generated tokens, up to 128 tokens. Notably, all LLMs exhibit
a nonlinear trend, differing in amplitude but following a
similar general pattern. This suggests that while sequential
token generation behavior is consistent across models, the
intensity and magnitude vary.
This observation enables the fitting of parametric func-

tions to approximate model-specific operational curves for

Figure 3. Non-linear behavior in token generation

Figure 4. GPU utilization of different LLM architectures on
the same Hardware.

energy consumption, which is crucial for the proposed rout-
ing architecture in Section 5.
A potential indicator of this behavior is the GPU utiliza-

tion. Figure 4 shows that while Mistral has the lowest GPU
utilization, it also exhibits the highest energy consumption
per token in Figure 3. However, this pattern is not universal,
as other model architectures share similar GPU utilization
yet display distinct energy characteristics in their operating
curves.
This evaluation shows that for research question 2: How

does sequential output token generation impact energy con-
sumption? The sequential token generation has a character-
istic impact on their energy per token metric. This nonlinear
function is observable for all evaluated Transformer based
Language Models, opening energy cost estimations given a
model and specific hardware.

211



Beyond Test-Time Compute Strategies: Advocating Energy-per-Token in LLM Inference EuroMLSys’25, March 30-April 3, 2025, Rotterdam, Netherlands

4.3 Trade-Off between Accuracy and Energy
Consumption

A simple way to improve the model quality during test-time
is to aggregate multiple outputs of an SLM, called majority
voting or self-consistency decoding [33]. The approach is
straightforward: for a given problem, we generate multiple
candidate solutions and select the most frequent answer. In
our experimental setting, we sampled up to 16 candidate
solutions and selected the most common answer, similiar as
done by Huggingface [1]. For Chain-of-Thought Prompting
we used the same schemata as Meta published in their re-
lease of the LLaMa 3.2 family to evaluate on the MATH500
dataset 2. We allowed to reason up to 5 steps and generate a
maximum of up to 512 token. These strategies are applied ex-
clusively to the smaller variant of the LLaMA 3.2 architecture
(1B parameters). The goal is to determine whether advanced
test-time compute methods can enable smaller models to
approach the accuracy of their larger counterparts, and in
which costs.

The MMLU dataset was used as the evaluation bench-
mark, with each task designed to answer with only a single
output token, A, B, C or D. This controlled environment
ensured that the observed differences in performance and
energy consumption stemmed solely from model and the
test-time compute strategy.Table 1 presents a comparative
analysis of the accuracy and energy consumption of different
Llama models across various MMLU categories. The baseline
model, Llama 1B, is compared against two variants: Majority
Voting (MV) and Chain-of-Thought (CoT), along with the
Llama 8B model. The percentage changes in accuracy and
energy consumption relative to the Llama 1B baseline, pro-
vide insights into the efficiency and effectiveness of different
inference strategies. Majority Voting (MV) slightly improves
accuracy, with increases ranging from +0% (Math) to +19%
(Engineering). The method is particularly effective in Health
(+8%), Economics (+5%), Computer Science (+5%), and Nat-
ural Sciences (+4%). However, the trade-off is a significant
rise in energy consumption, ranging from +72% (Engineer-
ing) to +177% (Economics). This suggests that while MV can
offer modest accuracy improvements, it comes at a steep
energy cost, making it less practical for efficiency-sensitive
applications.
In contrast, Chain-of-Thought (CoT) prompting signifi-

cantly improves accuracy, particularly in Math (+281%), So-
ciology (+26%), Engineering (+17%), and Computer Science
(+13%). However, it has marginal effects in Humanities (+1%),
Economics (+5%), and Natural Sciences (+1%), suggesting
that step-by-step reasoning is more beneficial for structured
problem-solving tasks than for general knowledge-based
ones. The major downside of CoT is its immense compu-
tational cost, leading to a 120x to 150x increase in energy

2Dataset Math500, https://huggingface.co/datasets/meta-llama/Llama-3.2-
1B-Instruct-evals/viewer/Llama-3.2-1B-Instruct-evals__math__details

consumption, making it highly inefficient for real-world de-
ployment.
On the other hand, Llama 8B consistently outperforms

all Llama 1B variants, with accuracy improvements ranging
from 47% (Computer Science) to 350% (Math) while main-
taining a more moderate energy increase of 35-65%. This
makes Llama 8B significantly more energy-efficient than
CoT-enhanced Llama 1B, as it provides higher accuracy at
a much lower relative energy cost. The model particularly
excels in math-heavy and structured reasoning tasks (e.g.,
Math: +350%, Sociology: +72%), reinforcing the idea that
larger models handle complex reasoning better.
This evaluation shows that for research question 3: How

do test-time compute strategies, such as Majority Voting and
Chain-of-Though Prompting, affect the trade-off between ac-
curacy and energy consumption? CoT Prompting, despite its
accuracy benefits, is highly energy-inefficient, while Llama
8B offers a better trade-off between accuracy and energy
consumption. To be highlighted is the effect on specific cat-
egories. While it makes sense to apply CoT for structured
problem solving tasks, step-by-step reasoning is not ben-
eficial for general knowledge-based tasks. This highlights
the need for selective application of reasoning techniques to
balance accuracy and efficiency.

5 Discussion: A Solution for
Energy-Efficient Query Routing

We highlight the fundamental trade-off between accuracy
and energy efficiency for five different LLMs. Our analysis
shows that techniques like Majority Voting provide negli-
gible accuracy improvements with additional energy cost,
whereas Chain-of-Thought (CoT) prompting significantly
enhances accuracy in reasoning-heavy tasks but comes with
a massive energy overhead. Meanwhile, Llama 8B yields
substantial accuracy improvements at a more moderate en-
ergy increase, making it a more efficient alternative to CoT-
enhanced Llama 1B. Given these insights, we propose an
adaptive routing mechanism to balance accuracy and energy
consumption dynamically.

Query x

Performance
Estimator f(x)

Energy Estimator 
g(x)

Routing Function
f(y1,y2) Target LLM

Select
LLM

Figure 5. Routing architecture with Performance and Energy
Estimator

Figure 5 visualizes an architectural design to balance en-
ergy efficiency with accuracy. The architecture includes two
estimators:
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Category Zero-Shot Reasoning
Llama 1B Llama 8B Llama 1B MV Llama 1B CoT

Acc. Energy Acc. Δ%Acc, Δ%E Acc. Δ%Acc, Δ%E Acc. Δ%Acc, Δ%E
Computer Science 0.38 78,556 kJ 0.56 (+47%, +42%) 0.39 (+3%, +118%) 0.43 (+13%, +13,858%)

Economics 0.40 80,437 kJ 0.62 (+51%, +65%) 0.42 (+5%, +177%) 0.42 (+5%, +13,211%)
Engineering 0.37 74,805 kJ 0.75 (+99%, +36%) 0.44 (+19%, +72%) 0.43 (+17%, +12,233%)

Health 0.50 78,484 kJ 0.78 (+57%, +44%) 0.54 (+8%, +108%) 0.55 (+10%, +14,339%)
Humanities 0.44 79,029 kJ 0.72 (+61%, +63%) 0.46 (+5%, +174%) 0.45 (+2%, +13,334%)

Math 0.11 83,532 kJ 0.39 (+350%, +37%) 0.11 (+0%, +88%) 0.31 (+281%, +15,132%)
Natural Sciences 0.26 76,172 kJ 0.54 (+100%, +41%) 0.27 (+4%, +102%) 0.29 (+11%, +15,483%)

Sociology 0.47 76,673 kJ 0.82 (+72%, +40%) 0.48 (+2%, +97%) 0.60 (+26%, +13,198%)
Table 1. Accuracy and energy consumption (in kJ) of the Llama 1B model processing the MMLU benchmark. This table
presents accuracy and percentage increase in accuracy and energy consumption changes when using the Llama 8B or applying
Chain-of-Thought (CoT) and Majority Voting to Llama 3.2 1B, compared to the Zero-Shot Llama 1B.

• Performance Estimator: Uses query features to pre-
dict the expected accuracy of different models and
techniques.

• Energy Estimator: Estimates the energy consump-
tion for each inference method based on historical data
and model/hardware-specific energy curves.

The system dynamically selects the optimal LLM for each
query, balancing accuracy and energy efficiency based on pre-
collected benchmarking data. For low-complexity queries,
such as those in Humanities, Natural Sciences, and Econom-
ics, where CoT provides minimal accuracy improvements,
the system defaults to Llama 1B to save energy. Majority
Voting (MV) can be applied in cases of uncertainty with
accepting additional energy costs. For complex reasoning
tasks, such as Math, Engineering, and Computer Science,
the system routes queries to Llama 8B instead of using CoT
on Llama 1B, as Llama 8B offers similar or better accuracy
with lower energy consumption ( 40-60%). For high-accuracy
critical queries, CoT remains an option, particularly in Math,
where it boosts accuracy by 281%.

However, the system dynamically limits reasoning steps
based on query complexity to prevent unnecessary energy
expenditure. A key component of the approach is leverag-
ing operating curves for token generation, which optimize
energy usage in token-intensive processes like CoT. These
curves provide insights into diminishing returns, highlight-
ingwhen additional tokens contribute little to accuracywhile
significantly increasing energy costs.

By integrating token budget mechanisms, similiar as done
in Sprout [13], the system dynamically regulates reasoning
steps in CoT, ensuring only the necessary depth of reason-
ing is applied per query. It also predicts optimal stopping
points to avoid high computational costs without sacrificing
accuracy. Additionally, by adjusting token budgets based on
real-time factors like server load, latency constraints, and
regional carbon intensity, the system ensures sustainable
inference while maintaining a balance between accuracy

and energy efficiency. The challenges include accuracy-to-
energy optimization, constraint enforcement, and dynamic
adaptation based on conditions like GPU load or regional
carbon intensity. The system’s success is measured through
metrics such as energy savings and accuracy compared to
using a single fixed LLM.

6 Conclusion
This paper evaluated the energy efficiency of different Large
Language Models (LLMs) in token processing and genera-
tion, proposing an intelligent routing mechanism to balance
accuracy and energy consumption. Our analysis revealed
a fundamental tradeoff: while reasoning techniques such
as Chain of Thought (CoT) significantly enhance the accu-
racy of Small Language Models (SLMs), they do so at an
extreme energy cost—up to 130-150× compared to the base-
line model without reasoning. These findings challenge the
current trend of improving SLMs primarily through complex
reasoning strategies—raising the question: at what cost? This
calls for a shift toward more energy-efficient LLMs rather
than relying on computationally expensive inference-time
techniques.

The inference cost of LLMs is largely driven by autoregres-
sive token generation, making energy efficiency a crucial
factor in real-world applications. While high-performance
LLMs are often overused for simple tasks that smaller mod-
els can handle, our findings suggest that SLMs, when selec-
tively enhanced with reasoning techniques, can sometimes
approach the accuracy of larger models for complex tasks
like math-solving. However, the variability across task cat-
egories highlights the need for an adaptive routing system
that intelligently selects the optimal model and reasoning
approach per query.

To address this, we proposed a dynamic decision-making
architecture that routes queries based on estimated com-
plexity, accuracy requirements, and energy constraints. By
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leveraging operation curves—which map energy consump-
tion to task-specific accuracy—we can systematically decide
when to scale up to a larger LLM, rely on a base SLM, or use
reasoning techniques like CoT. The controlled reasoning pro-
cess in CoT, governed by these operating curves, enables the
system to optimize token generation, ensuring that only the
necessary reasoning depth is applied per query, thus min-
imizing excessive energy consumption. This vision shifts
the focus from indiscriminate model scaling to intelligent,
task-aware LLM utilization, ensuring both sustainability and
efficiency in future AI applications.
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