
Towards Asynchronous Peer-to-Peer Federated
Learning for Heterogeneous Systems

Christos Sad
Aristotle University of Thessaloniki

Greece
csant@auth.gr

George Retsinas
National Technical University of

Athens
Greece

gretsinas@central.ntua.gr

Dimitrios Soudris
National Technical University of

Athens
Greece

dsoudris@microlab.ntua.gr

Kostas Siozios
Aristotle University of Thessaloniki

Greece
ksiop@auth.gr

Dimosthenis Masouros
National Technical University of

Athens
Greece

dmasouros@microlab.ntua.gr

Abstract
Federated Learning (FL) enables collaborative model training
across distributed, privacy-sensitive data sources. Traditional
FL follows a centralized client-server architecture, relying on
synchronized updates and uniform participation. However,
real-world deployments face challenges such as client hetero-
geneity, stragglers, non-independent data distributions, and
single points of failure due to server centralization. To ad-
dress these limitations, we propose an asynchronous Peer-to-
Peer FL scheme that enhances learning efficiency in heteroge-
neous environments. Our method employs a gradient-aware
aggregation algorithm with a progress-based adaptive fusion
weight, mitigating the impact of resource disparities among
clients. Experimental results on CIFAR-10/100 datasets indi-
cate that our scheme achieves 4.8 − 16.3% and 10.9 − 37.7%
higher accuracy compared to FedAVG and FedSGD, consid-
ering constrained total number of exchanged updates among
clients. Furthermore, it effectively handles client heterogene-
ity through its dynamic fusion weight adjustment.

Keywords: Federated Learning, Asynchronous Communica-
tion, Peer to Peer, Gradients, Heterogeneous Systems
ACM Reference Format:
Christos Sad, George Retsinas, Dimitrios Soudris, Kostas Siozios,
and Dimosthenis Masouros. 2025. Towards Asynchronous Peer-to-
Peer Federated Learning for Heterogeneous Systems. In The 5th
Workshop on Machine Learning and Systems (EuroMLSys ’25), March
30–April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3721146.3721952

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroMLSys ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1538-9/25/03
https://doi.org/10.1145/3721146.3721952

1 Introduction
In recent years, Federated Learning(FL) [1] has emerged as a
prominent distributed machine learning paradigm, enabling
the training of models across decentralized data sources. By
ensuring that data remain on local devices, FL addresses crit-
ical privacy and security concerns, particularly in domains
such as healthcare and finance, where direct data sharing is
restricted by strict regulation constraints[2].

Traditional FL employs a client-server architecture, where
a central server coordinates learning acrossmultiple clients [3].
The most widely used FL algorithms are Federated Stochas-
tic Gradient Descent (FedSGD) and Federated Averaging
(FedAVG)[1]. In FedSGD, clients compute gradients on their
local data and send them to the server for aggregation, whereas
in FedAVG, clients train locally for multiple iterations before
sharing model updates, reducing communication overhead.
While these methods are effective, they rely on a central-
ized server, synchronous updates, and uniform participation,
which can be problematic in real-world settings that often
involve client device heterogeneity, dynamic network condi-
tions, and non-independent and identically distributed (non-
i.i.d.) datasets. These non-ideal characteristics introduce sig-
nificant challenges, including stragglers – where slower or
low-bandwidth devices delay the entire training [4, 5] – as
well as convergence instability and bias due to non-uniform
data distributions [6]. On top of that, centralized server ag-
gregation can act as a single point of failure, making the
system vulnerable to collapsion.

To mitigate these limitations, various solutions have been
proposed in the literature. Some efforts focus on addressing
device heterogeneity while retaining the centralized nature
of FL, by selectively deciding each clients’ contribution on
every aggregation round [7], or by incorporating techniques
such as gradient compression and quantization to reduce the
computational and communication burden of stragglers [8–
18]. Moreover, asynchronous FL approaches have been intro-
duced to improve scalability by allowing clients to update the

261

https://doi.org/10.1145/3721146.3721952
https://doi.org/10.1145/3721146.3721952

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Sad et al.

global model at different intervals, rather than synchronizing
updates in fixed rounds [19, 20]. To tackle the centralized
nature of traditional FL, decentralized and peer-to-peer (P2P)
FL approaches have been proposed. In decentralized FL [21–
24], clients form connected network graphs, exchanging up-
dates without a central server, gradually converging towards
a global consensus. Yet, the effectiveness of decentralized
FL depends on network topology and communication effi-
ciency, and fully decentralized methods may suffer from slow
convergence. P2P solutions [25] further extend decentraliza-
tion by allowing direct client-to-client collaboration, where
clients exchange and aggregate models with their neighbors.
Intuitively, P2P FL is a highly promising paradigm as it

eliminates the reliance on a central server, enabling scalable
and resilient learning. From a machine learning perspective,
P2P introduces stochasticity in model aggregation, by en-
abling clients to aggregate updates in an iterative, diffusion-
like manner, leading to robust, well-regularized convergence.
From a systems perspective, P2P FL avoids single points of
failure while also simplifying client coordination and reduc-
ing communication costs by distributing aggregation and
enabling decentralized peer interactions.
In this paper, we propose a novel asynchronous P2P FL

scheme. It incorporates an aggregation algorithm that ex-
ploits gradient information and employs a progress-based
adaptive fusion weight to effectively mitigate the impact
of heterogeneous client resources, enhancing overall per-
formance. Our scheme introduces an aggregation decision
buffer and maker to regulate client interactions and address
asynchronous training in P2P systems. It leverages inter-
client gradients over simple averaging and employs progress-
based adaptive fusion for improved performance in hetero-
geneous environments. Experimental results show that we
achieve 4.8%−16.3% and 10.9%−37.7% higher accuracy than
FedAVG and FedSGD on CIFAR-10/100, under constrained
communications. Additionally, our scheme reduces the im-
pact of stragglers on other clients, cutting relevant accuracy
drops by 18%.

2 Background on Federated Learning
Federated Learning (FL) is a machine learning paradigm
that enables the training of high-quality models across dis-
tributed clients or devices while preserving data privacy [3].

2.1 Traditional Federated Learning
Traditional FL follows a training approach involving clients
and a server, as illustrated in Figure 1a. Clients perform local
training and periodically send updates to a global server
after a predefined number of local iterations, referred to as a
local round. The server collects these updates, verifies com-
pliance with aggregation constraints (e.g., minimum client
participation), and performs a global model update using

Local
Data

Local
Model

Local
iteration(s)

Local
Data

Local
Model

Local
iteration(s)

Receive/Send Updates

Constraints Aggregation
Algorithm

Client i Client j

Se
rv

er

(a) Centralized FL

Local
Data

Local
Model

Aggregation
Algorithm-i

Local
iteration(s)
i

Aggregation
Algorithm-j

Local
Data

Local
Model

Local
iteration(s)
j

Client i

Client j

(b) Peer-to-Peer FL

Figure 1. Overview of (a) Centralized and (b) Peer-to-Peer
Federated Learning schemes.

an aggregation algorithm. The updated model is then redis-
tributed to the clients for the next training round. In vanilla
FL schemes [1], such as FedAvg and FedSGD, aggregation is
performed by computing a weighted average of the model
parameters (or gradients) received from participating clients.
Despite its advantages, this approach has several limita-

tions. First, its centralized architecture creates a single point
of failure, i.e., if the server becomes unavailable, the entire
learning process is disrupted [26]. Second, vanilla FL oper-
ates in a synchronous manner, requiring the server to wait
for updates from all selected clients before aggregation. This
makes FL susceptible to stragglers, i.e., clients with limited
computational or network resources, causing delays in the
training process [26]. Last, it also struggles with statistical
heterogeneity, particularly when client datasets are not inde-
pendently and identically distributed (non-iid). In such cases,
the naive aggregation of client updates does not consider
skewed or imbalanced datasets, leading to biased global
updates and slower convergence [27].

2.2 Peer-to-peer Federated Learning
Peer-to-peer (P2P) FL eliminates the need for a central server
by allowing clients to collaborate directly, as illustrated in Fig-
ure 1b. Similar to traditional FL, the training process consists
of local model updates, where each client trains on its private
dataset for an arbitrary number of local iterations, followed
by peer-to-peer synchronization, where models are shared
and aggregated among connected peers. This decentralized
approach tackles both device heterogeneity and single points
of failure, by allowing clients to update their models at their
own pace [4, 26]. Moreover, the aggregation protocol can
vary per client, enabling personalized update strategies based
on data similarity or statistical divergence [25].

2.2.1 P2P challenges. While P2P federated learning miti-
gates traditional FL challenges, it introduces new complex-
ities, such as determining which (and how many) clients
should participate in each synchronization round and design-
ing effective aggregation protocols. Novel communication
topologies have been proposed to reduce communications

262

Asynchronous Peer-to-Peer Federated Learning for Heterogeneous Systems EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

while preserving client accuracy [23], facing challenges aris-
ing from dataset heterogeneity and varying client capabili-
ties. Additionally, similarity-based neighbor matching mech-
anisms improve client pairing within peer neighborhoods,
considering non-i.i.d. data distribution but overlooking the
asynchronous nature of real-world applications [25]. In some
cases, commitment mechanisms with an elected committee
system manage the FL process [24], yet client heterogeneity
and asynchronous FL challenges remain unaddressed.

3 Proposed Asynchronous P2P-FL Scheme
To address the aforementioned challenges, we propose a
novel P2P FL scheme. Unlike traditional synchronous ap-
proaches requiring global synchronization, our scheme oper-
ates asynchronously, allowing clients to update and commu-
nicate at their own pace, reducing the impact of stragglers
in heterogeneous FL environments. It also addresses asyn-
chronous convergence progression (§2.2.1) and non-iid data
distributions with an advanced aggregation algorithm that
uses inter-client gradients and an adaptive fusion weight to
normalize each client’s impact, instead of relying on simple
averaging.

3.1 Proposed FL Scheme Processes
Figure 2 depicts our methodology, comprising the aggrega-
tion algorithm (8) and the communication protocol/topology.
Each client incorporates an Aggregation Decision Maker
(ADM) (6) to determine whether to initiate communication
and an Update Transmitter (7) to prepare and send update
messages. Additionally, it includes an aggregation algorithm
(8); in our approach, all clients use the same aggregation
algorithm (§3.5). Finally, the scheme features a common Ag-
gregation Decision Buffer (2), that stores all pending com-
munication requests and a Buffer Explorer (1), responsible
for searching for pending clients within the buffer. The com-
mon Aggregation decision buffer is stored distributed in a
random subset of clients for resilient execution (§3.3).

3.2 Proposed FL scheme life cycle
Each client trains locally (4) on its dataset (3) for a set num-
ber of iterations. Upon completion, the ADM (6) is triggered
(12) to decide on aggregation. This decision is sent (9) to
the Buffer Explorer (1), which accesses the Aggregation De-
cision Buffer (2) containing pending aggregation requests.
If a client skips aggregation, it continues local training. Oth-
erwise, the Buffer Explorer searches for an available peer. If
found, the buffer provides (10) both clients with peer infor-
mation (9), including identifiers, which are then transferred
(15) to the Update Transmitter (7). The two clients exchange
(11) model weights, prepared (13) into an update message
containing metadata such as iteration count. Finally, each
client applies the Aggregation Algorithm (8) to compute
the inter-client gradient (§3.5) and updates (14) its model

Ag
gr

eg
at

io
n

D
ec

is
io

n
Bu

ffe
r

Client iLocal
Dataset

Local
training

Aggregation
Decision
Maker

Local
Model

Update
Transmitter

Aggregation
Algorithm

Local
Dataset

Local
training

Aggregation
Decision
Maker

Local
Model

Update
Transmitter

Aggregation
Algorithm

id : j Client j

1

2

3 4 5

6 7 8

9

10

11

12 13 14

15

Buffer
Explorer

Buffer
Explorer

Figure 2. Proposed Asynchronous Peer-to-Peer Federated
Learning Scheme

(5). If no peer is available, the client’s request remains in
the buffer until an aggregation request arrives.

3.3 Communication protocol
Our communication protocol combines asynchronous FL
with P2P communication to minimize overhead. In this asyn-
chronous P2P scheme, each aggregation occurs between two
clients, significantly reducing communication costs. Choos-
ing more than two clients per communication round would
require a mesh topology, leading to exponential communica-
tion overhead, being impractical for large deployments.
Aggregation Decision Buffer and Explorer: a com-

mon Aggregation Decision Buffer (2) is introduced solely
to maintain the latest client pending for communication. It
interacts with each client’s Buffer Explorer to either store a
communication request or return a pending request to an-
other initiating client. It achieves this by maintaining the IDs
of pending clients, if any. This design preserves the asyn-
chronous nature of our FL scheme, as clients can access
information about available peers and establish P2P com-
munication independently. The Aggregation Decision Buffer
is stored inside all clients to ensure resilient execution in
case of failures. For the synchronization of the Aggregation
Decision Buffer, whenever a client needs to store a pend-
ing request, it sends a message containing only its identifier
(clients id) to all other clients. Conversely, when a client
initiates communication with a pending client, it notifies all
other clients through an update that includes the negation
of the pending client’s identifier (− pending client’s id). This
ensures that all clients remove the pending client’s identi-
fier from their Aggregation Decision Buffer. It is important
to note that, in the Aggregation Decision Buffer, typically
at most one client is pending for communication at a time.
This is because the Buffer Explorer first searches for pending

263

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Sad et al.

requests before storing any new ones. Thus, the buffer con-
tains minimal information and can be accommodated by all
clients regardless of their available resources. Each client has
also, its own Buffer Explorer (1) that searches the buffer.

3.4 Aggregation Decision Maker (ADM)
The proposed framework also relies on the Aggregation De-
cision Maker (ADM) (6), a component that each client must
include to participate in our proposed FL scheme. The ADM
contains the mechanism responsible for deciding whether
the client should initiate communication. Each client can
employ its own ADM, which may range from a simple (e.g.,
random decision mechanism) to a more complex (e.g., deci-
sions on prior actions or current states) implementation.
In our implementation, we use a simple ADM based on

Bernouli distribution. Specifically, the procedure follows the
conventional approach described in § 2.1, where each client
performs its local training iterations. At the end of each local
round, the ADM determines whether to initiate communica-
tion with a constant probability, ensuring equal participation
in communications across clients. Equation 1 describes the
probability that the ADM decides for a client to initiate com-
munication, where 𝑃𝑟 {𝑋 = 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒} is the probability
to communicate and 𝑐𝑜𝑛𝑠𝑡 is a constant number. In our ex-
periments, we set the parameter const to be equal to the half
of total number of participating clients.

𝑃𝑟 {𝑋 = 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒} = 100
𝑐𝑜𝑛𝑠𝑡

% (1)

At the end of each local round, the probability that a client
initiates communication is 2

𝐾
× 100%, where 𝐾 is the total

number of clients. Consequently, for 𝐾 clients with similar
capabilities starting training simultaneously, an average of
𝐾 × 2

𝐾
= 2 clients initiate communication per local round,

forming the communication pair for the round

3.5 Aggregation Algorithm
Our proposed aggregation algorithm (8) is built on two
key concepts: the influence of peers’ model differences on
the update and the dynamic adjustment of a fusion weight.
The peers’ gradient is a vector that captures the difference
between the model weights of two clients, analogous to a
gradient update in optimization. In essence, this gradient
indicates the direction in which we should adjust the model
weights to make one more like the other. However, rather
than completely transforming one model into the other, we
take a step in that direction to begin incorporating its in-
formation. The key issue here is determining precisely how
large that step should be.

Fusion protocol: Our fusion protocol involves each client
computing a gradient-like vector that represents the differ-
ence between its own weights and those of its peer during
communication. The client then updates its local weights
by adjusting them in the direction of the peer’s gradient,

normalized by a weight referred to as fusion weight (wf).
This weight𝑤𝑓𝑖 takes values from 0 (completely disregard
the second model) to 1 (completely disregard the current
client’s model).

𝑔𝑖 𝑗 =𝑊𝑖 −𝑊𝑗

𝑊𝑖,𝑎𝑔𝑔 =𝑊𝑖 𝑗 =𝑊𝑖−𝑤𝑓𝑖 × 𝑔𝑖 𝑗
(2)

Equations 2 present the equations for the fusion protocol.
𝑊𝑖 and𝑊𝑗 represent the weights of the peers before aggre-
gation,𝑊𝑖,agg denotes the updated weights of client 𝑖 after
aggregation, 𝑔𝑖 𝑗 is the gradient computed by client 𝑖 based
on the weights of client 𝑗 , and𝑤𝑓𝑖 is the fusion weight . It is
evident that the updated weights of client𝑖 are significantly
influenced by the peers’ gradient 𝑔𝑖 𝑗 , while the parameter
𝑤𝑓𝑖 plays a crucial role in modulating the overall process.

Dynamic adjustment of fusionweight (𝑤𝑓) : To ensure
client independence in asynchronous FL, we design our ag-
gregation algorithm to accommodate heterogeneous clients
with varying computational and communication capabili-
ties, which may cause latency during local training or model
updates. Additionally, some clients may communicate more
frequently. To address these challenges, we dynamically ad-
just the fusion weight based on the training progress of each
peer. Each client includes its progress in the update message.
The peer receiving this update message incorporates the
client’s progress when computing its own updated weights.
Thus, clients with low progress exert a minimal influence
on clients with high progress, preventing the degradation of
their weights, while clients with high progress can provide
valuable updates to clients with lower progress.

𝑝𝑖 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖
𝑡𝑎𝑟𝑔𝑒𝑡_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑖

,𝑤 𝑓𝑖 =𝑤𝑓0 ×
𝑝 𝑗

𝑝𝑖 + 𝑝 𝑗

𝑝 𝑗 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑗
𝑡𝑎𝑟𝑔𝑒𝑡_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑗

,𝑤 𝑓𝑗 =𝑤𝑓0 ×
𝑝𝑖

𝑝𝑖 + 𝑝 𝑗

(3)

Equations 3 compute the progress 𝑝𝑖 and 𝑝 𝑗 for client𝑖
and client𝑗 as the ratio of the current iteration to the total
target iterations. They also describe the fusion weights𝑤𝑓𝑖
and 𝑤𝑓𝑗 used by clients 𝑖 and 𝑗 , respectively, with 𝑤𝑓0 rep-
resenting the initial fusion weight. The fusion weights of
the two clients are complementary and sum to𝑤𝑓0. When
both clients have similar progress, the fusion weight is ap-
proximately half of𝑤𝑓0. It decreases toward zero when peer
client has minimal progress and approaches𝑤𝑓0 when the
peer client’s progress is much higher. This allows the peer
client to influence aggregation based on its progress. If more
than one peer (e.g., 𝐾) communicates simultaneously with
the client, the fusion weight for each peer(𝑤𝑓𝑖 𝑗) is computed
based on the sum of the progress of all peers (Σ𝑘=𝐾

𝑘=1 𝑝𝑘) and
the client’s progress(𝑝𝑖). The updated weights are then com-
puted by combining all the peers’ inter-client gradients(𝑔𝑖 𝑗),
as described in equation 4.

264

Asynchronous Peer-to-Peer Federated Learning for Heterogeneous Systems EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

50000 100000
Communication Cost (total)
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Clients: 5

Ours
FedAVG
FedSGD
Centralized training Acc
Centralized on 1/5 training set Acc

50000 100000
Communication Cost (total)
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Clients: 10

Ours
FedAVG
FedSGD
Centralized training Acc
Centralized on 1/10 training set Acc

Figure 3. Pareto optimal analysis of accuracy and communi-
cation cost

𝑤𝑓𝑖 𝑗 =𝑤𝑓0 ×
𝑝 𝑗

𝑝𝑖 + Σ𝑘=𝐾
𝑘=1 𝑝𝑘

𝑊𝑖,𝑎𝑔𝑔 =𝑊𝑖 − Σ 𝑗=𝐾
𝑗=1𝑤𝑓𝑖 𝑗 × 𝑔𝑖 𝑗

(4)

4 Evaluation
We evaluate our methodology on widely used FL settings
with CIFAR-10 and CIFAR-100 [28], using the ResNet-18
architecture [29]. The dataset is partitioned into the standard
training, testing, and validation subsets, with the training set
evenly divided into K partitions, where 𝐾 is the number of
clients. Accuracy is computed on a common, unseen testing
set for consistency across clients. We compare our algorithm
with FedAVG and FedSGD [1].

4.1 Parameter fine-tuning
Local training configuration : For local training, we use
the SGD optimizer with momentum = 0.9, weight_decay =

5 × 10−4, and an initial learning rate of 0.01 with a Multi-
StepLR scheduler. For CIFAR-10, milestones occur at 50% and
75% of iterations, with 𝛾 = 0.1; for CIFAR-100, milestones
are at 30%, 60%, and 80%, with 𝛾 = 0.2. A batch size of 32 is
used for all three FL algorithms.

Federated Learning parameters tuning :We define the
target total communication cost via Pareto-optimal analysis
and parameter tuning for each algorithm on CIFAR-10. The
results are shown in Figure 3, where total communication
cost represents the number of update messages exchanged
during federated training. Additionally, we perform central-
ized training on both the total and partitioned datasets, us-
ing 1

5 and
1
10 of the dataset for 5 and 10 clients, respectively.

Average accuracy across splits is calculated, simulating inde-
pendent client training without inter-client communication.
The analysis shows that higher communication costs en-

hance accuracy by enabling more frequent updates and im-
proved knowledge sharing. A communication cost limit of
100, 000 is selected, where our scheme outperformed central-
ized training on split datasets reaching 91.6% compared to
88.23% of centralized training on 1

5 split and 85.75% compared

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Wfo

0.82

0.84

0.86

0.88

0.90

0.92

Ac
cu

ra
cy

Accuracy over Wfo

Figure 4. Analysis of accuracy over𝑤𝑓0 values

to 83.45% of 1
10 split. Notably, FedAVG (86.8% and 80.14%) and

FedSGD (80.69% and 66.84%) achieve lower accuracy and do
not surpass the centralized training results for corresponding
splits in the tested range of total communications(≤ 100, 000).

In our approach, the total number of clients that commu-
nicate at the end of each round is 𝐾 × 2

𝐾
= 2 (§3.4), with P2P

(direct) communication, resulting in 2 × 1 = 2 exchanged
updates per round. In contrast, FedAVG requires all K clients
to exchange updates with the server at each round, and simi-
larly in FedSGD. For both, the exchanged updates per round
are 2 × 𝐾 . The number of rounds is given by 𝑡𝑜𝑡𝑎𝑙_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑙𝑜𝑐𝑎𝑙_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 .
Centralized training consists of 250,000 total iterations, a

configuration replicated in both our approach and FedAVG.
To control the communication cost, the number of local iter-
ations per round was adjusted for both methods. In contrast,
FedSGD, with fixed local iterations of 1 [1], regulates com-
munication cost by adjusting total iterations. To meet the
100, 000 communication constraint, we set 5 and 25 local
iterations for our approach and FedAVG with 𝐾 = 5 clients,
and 5 and 50 for 𝐾 = 10. For FedSGD, we use 10, 000 and
5, 000 total iterations for 5 and 10 clients, respectively.

We also, tested several initial values for the fusion weight
(𝑤𝑓0), ranging from 0 (no peer contribution) to 2 (total model
transformation when 𝑝𝑖 = 𝑝 𝑗), including 1 (averaging if
𝑝𝑖 = 𝑝 𝑗). Figure 4 shows experiments on CIFAR10 with𝐾 = 5
clients for different𝑤𝑓0 values. The optimal value is𝑤𝑓0 = 1,
as expected with i.i.d. distributions, and was used in our
experiments. For more complex distributions, this parameter
can be fine-tuned through Pareto-optimal analysis.

4.2 Comparison with traditional FL approaches
In this section, we compare our scheme with FedAVG and
FedSGD. To ensure fairness, identical configurations are used
for local training across all algorithms. A communication
cost limit of 100, 000 is imposed for all experiments. Ad-
ditionally, we use similar clients that started training
simultaneously, though our scheme is capable of operating
in heterogeneous conditions.

265

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Sad et al.

0 2000 4000 6000 8000 10000
FedSGD Iterations

0 50000 100000 150000 200000 250000
Ours/FedAVG Iterations

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Ours (Average clients accuracy)
FedAVG
FedSGD

Ours FedAVG FedSGD Total : Ours,
 FedAVG,FedSGD

0.0

2.5

5.0

7.5

10.0

Av
g

pe
r i

te
ra

tio
n

0.4 0.4

10

1.00e+05

0

25000

50000

75000

100000
 System Communications

Figure 5. Accuracy and Communication cost : 5 clients -
Cifar10.

0 1000 2000 3000 4000 5000
FedSGD Iterations

0 50000 100000 150000 200000 250000
Ours/FedAVG Iterations

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Ours (Average clients accuracy)
FedAVG
FedSGD

Ours FedAVG FedSGD Total : Ours,
 FedAVG,FedSGD

0

5

10

15

20

Av
g

pe
r i

te
ra

tio
n

0.4 0.4

20

1.00e+05

0

25000

50000

75000

100000
 System Communications

Figure 6. Accuracy and Communication cost : 10 clients -
Cifar10.

Figures 5 and 6 show experimental results on CIFAR-10
for 5 and 10 clients, respectively. In both cases, ours aver-
age(green line) and individual client accuracies (gray lines)
outperform FedAVG(red line) and FedSGD(purple line). In
the 5-client scenario, our scheme achieves 91.6%, surpassing
FedAVG (86.8%) and FedSGD (80.7%). In the 10-client sce-
nario, ours reaches 85.8%, while FedAVG and FedSGD score
80.1% and 66.8%, respectively. These results highlight our
scheme’s superior communication efficiency.
At the bottom of each figure, a bar plot shows communi-

cations for each method. While total communications are
equal across methods (100, 000), the average communications

0 500
Time (sec)

10

15

20

25

30

Ac
cu

ra
cy

(%
)

 ~ -19%
 ~ +2.5%

Simple Aggregation

0 200
Time (sec)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Ac
cu

ra
cy

(%
) ~ -1.3%

 ~ +7.7%

Heterogeneity-Aware Aggregation

fast client
slow client

Figure 7. Learning curves of heterogeneous clients

per iteration (ACPI), calculated as 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
𝑡𝑜𝑡𝑎𝑙_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , is the

same for our approach and FedAVG (0.2 and 0.4 for 5/10
clients) but differs for FedSGD (10, 20 respectively).

Table 1. Comparison of Federated Learning Approaches

Dataset Clients Com. Cost Ours(%) FedAVG(%) FedSGD(%)
Cifar10 5 100, 000 91.6 86.8 80.69
Cifar10 5 20, 000 81.53 73.34 57.06
Cifar10 5 5, 000 61.15 54 38.2
Cifar10 10 100, 000 85.76 80.14 66.84
Cifar10 10 20, 000 70.6 60.87 39.45
Cifar100 5 100, 000 68.05 58.05 41.53
Cifar100 5 20, 000 45.4 30.88 15.6

Cifar100 10 100, 000 57.05 40.77 19.34
Cifar100 10 20, 000 28.96 15.9 7.3

Table 1 presents results for both Cifar10/100 with 5/10
clients across communication levels from 100,000 (extensive
communication) to 5,000 (limited). Ours consistently out-
performs others, achieving 4.8 − 16.3% higher accuracy than
FedAVG and 10.9 − 37.7% higher than FedSGD. As commu-
nication constraints tighten, only ours mitigates accuracy
drops by distributing communication more efficiently with
the ADM 6 . On CIFAR-100, FedAVG and FedSGD some-
times drop to ≤ 20% accuracy. While they perform well on
CIFAR-10/100, constrained communications hinder knowl-
edge sharing. With an unlimited communication budget,
these algorithms could achieve higher accuracy.

4.3 Heterogeneous Clients Environment
Finally, we conduct a controlled experiment with two clients:
a fast client which performs frequent local updates due to
higher computational power and a slow client, which up-
dates less frequently and remains in an earlier convergence
phase. We implement the experiment on our algorithmwith
a fixed value (1) on the fusion weight𝑤𝑓 , reffed as naive
aggregation. Also, the experiment is conducted on our pro-
posed algorithm with the progress based adaptive fu-
sion weight. Figure 7 presents the accuracy over time for

266

Asynchronous Peer-to-Peer Federated Learning for Heterogeneous Systems EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

both clients. On the left plot, naive aggregation causes the
slow client’s lower accuracy to negatively impact the fast
client, resulting in an accuracy drop of nearly 19%, while the
slow client improves by only 2.5%. However, employing our
proposed heterogeneity-aware aggregation strategy (§ 3.5)
significantly mitigates this issue (right plot), reducing the
fast client’s accuracy loss to only 1.3%, while the slow client
benefits from a 7.7% improvement.

5 Conclusion
We introduce an asynchronous P2P FL scheme with a novel
aggregation protocol. This protocol leverages inter-client
gradients and dynamically adjusts a fusion weight based on
client progress, addressing communication and computation
heterogeneity. Experiments on CIFAR-10/100 show that our
scheme outperforms FedAvg and FedSGD in accuracy while
effectively handles heterogeneous clients.

Acknowledgements
The authors would like to thank the National Infrastructure
for Research and Technology Network (GRNET) for funding
the cloud infrastructure used to evaluate the results of this pa-
per. This work has been partially funded by the PRIVATEER
project. PRIVATEER has received funding from the Smart
Networks and Services Joint Undertaking (SNS JU) under the
European Union’s Horizon Europe research and innovation
programme under Grant Agreement No. 101096110. Views
and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European
Union or SNS JU. Neither the European Union nor the grant-
ing authority can be held responsible for them.

References
[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentral-
ized data,” in Artificial intelligence and statistics, pp. 1273–1282, PMLR,
2017.

[2] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger, “Brain-
torrent: A peer-to-peer environment for decentralized federated learn-
ing,” arXiv preprint arXiv:1905.06731, 2019.

[3] P. Qi, D. Chiaro, A. Guzzo, M. Ianni, G. Fortino, and F. Piccialli, “Model
aggregation techniques in federated learning: A comprehensive survey,”
Future Generation Computer Systems, vol. 150, pp. 272–293, 2024.

[4] M. Ye, X. Fang, B. Du, P. C. Yuen, and D. Tao, “Heterogeneous federated
learning: State-of-the-art and research challenges,” ACM Comput. Surv.,
vol. 56, Oct. 2023.

[5] E. Diao, J. Ding, and V. Tarokh, “Hetero{fl}: Computation and com-
munication efficient federated learning for heterogeneous clients,” in
International Conference on Learning Representations, 2021.

[6] D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. Whatmough,
andV. Saligrama, “Federated learning based on dynamic regularization,”
arXiv preprint arXiv:2111.04263, 2021.

[7] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the objec-
tive inconsistency problem in heterogeneous federated optimization,”
Advances in neural information processing systems, vol. 33, pp. 7611–
7623, 2020.

[8] Y. Xu, Y. Liao, H. Xu, Z. Ma, L. Wang, and J. Liu, “Adaptive control of
local updating and model compression for efficient federated learning,”
IEEE Transactions on Mobile Computing, vol. 22, no. 10, pp. 5675–5689,
2022.

[9] M. K. Nori, S. Yun, and I.-M. Kim, “Fast federated learning by balanc-
ing communication trade-offs,” IEEE Transactions on Communications,
vol. 69, no. 8, pp. 5168–5182, 2021.

[10] T. Parcollet, J. Fernandez-Marques, P. P. Gusmao, Y. Gao, and N. D.
Lane, “Zerofl: Efficient on-device training for federated learning with
local sparsity,” in International Conference on Learning Representations
(ICLR), 2022.

[11] F. Ilhan, G. Su, and L. Liu, “Scalefl: Resource-adaptive federated learn-
ing with heterogeneous clients,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 24532–24541,
2023.

[12] S. Horvath, S. Laskaridis, M. Almeida, I. Leontiadis, S. Venieris, and
N. Lane, “Fjord: Fair and accurate federated learning under heteroge-
neous targets with ordered dropout,” Advances in Neural Information
Processing Systems, vol. 34, pp. 12876–12889, 2021.

[13] H. Huang,W. Zhuang, C. Chen, and L. Lyu, “Fedmef: Towards memory-
efficient federated dynamic pruning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 27548–
27557, 2024.

[14] F. Ilhan, G. Su, and L. Liu, “Scalefl: Resource-adaptive federated learn-
ing with heterogeneous clients,” in 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 24532–24541, 2023.

[15] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 9,
pp. 3400–3413, 2019.

[16] S. Chen, C. Shen, L. Zhang, and Y. Tang, “Dynamic aggregation for
heterogeneous quantization in federated learning,” IEEE Transactions
on Wireless Communications, vol. 20, no. 10, pp. 6804–6819, 2021.

[17] H. Chen and H. Vikalo, “Mixed-precision quantization for federated
learning on resource-constrained heterogeneous devices,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 6138–6148, 2024.

[18] D. Jhunjhunwala, A. Gadhikar, G. Joshi, and Y. C. Eldar, “Adaptive
quantization of model updates for communication-efficient federated
learning,” in ICASSP 2021-2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 3110–3114, IEEE, 2021.

[19] T. Zhang, L. Gao, S. Lee, M. Zhang, and S. Avestimehr, “Timelyfl:
Heterogeneity-aware asynchronous federated learning with adaptive
partial training,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5064–5073, 2023.

[20] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and
D. Huba, “Federated learning with buffered asynchronous aggrega-
tion,” in International Conference on Artificial Intelligence and Statistics,
pp. 3581–3607, PMLR, 2022.

[21] L. Yuan, Z. Wang, L. Sun, S. Y. Philip, and C. G. Brinton, “Decentralized
federated learning: A survey and perspective,” IEEE Internet of Things
Journal, 2024.

[22] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case
study for decentralized parallel stochastic gradient descent,” Advances
in neural information processing systems, vol. 30, 2017.

[23] M. De Vos, S. Farhadkhani, R. Guerraoui, A.-M. Kermarrec, R. Pires,
and R. Sharma, “Epidemic learning: Boosting decentralized learning
with randomized communication,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[24] C. Che, X. Li, C. Chen, X. He, and Z. Zheng, “A decentralized federated
learning framework via committee mechanism with convergence guar-
antee,” IEEE Transactions on Parallel and Distributed Systems, vol. 33,
no. 12, pp. 4783–4800, 2022.

267

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Sad et al.

[25] Z. Li, J. Lu, S. Luo, D. Zhu, Y. Shao, Y. Li, Z. Zhang, Y. Wang, and
C. Wu, “Towards effective clustered federated learning: A peer-to-peer
framework with adaptive neighbor matching,” IEEE Transactions on
Big Data, 2022.

[26] P. Kairouz, H. B.McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al., “Advances
and open problems in federated learning,” Foundations and trends® in
machine learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[27] J.-H. Duan, W. Li, D. Zou, R. Li, and S. Lu, “Federated learning with
data-agnostic distribution fusion,” in 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 8074–8083, 2023.

[28] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

268

	Abstract
	1 Introduction
	2 Background on Federated Learning
	2.1 Traditional Federated Learning
	2.2 Peer-to-peer Federated Learning

	3 Proposed Asynchronous P2P-FL Scheme
	3.1 Proposed FL Scheme Processes
	3.2 Proposed FL scheme life cycle
	3.3 Communication protocol
	3.4 Aggregation Decision Maker (ADM)
	3.5 Aggregation Algorithm

	4 Evaluation
	4.1 Parameter fine-tuning
	4.2 Comparison with traditional FL approaches
	4.3 Heterogeneous Clients Environment

	5 Conclusion
	References

