
Decoupling Structural and Quantitative Knowledge in
ReLU-based Deep Neural Networks

José Duato
jduato@qsimov.com

Qsimov Quantum Computing S.L.
Talavera de la Reina, Spain

Jose I. Mestre
jmiravet@uji.es

Universitat Jaume I
Castelló de la Plana, Spain

Manuel F. Dolz
dolzm@uji.es

Universitat Jaume I
Castelló de la Plana, Spain

Enrique S. Quintana-Ortí
quintana@disca.upv.es

Universitat Politècnica de València
Valencia, Spain

José Cano
jose.canoreyes@glasgow.ac.uk

University of Glasgow
Glasgow, United Kingdom

Abstract
The relentless growth of artificial intelligence applications
has led to substantial economic and environmental costs
associated with training deep neural networks (DNNs). Rec-
ognizing the challenges in further optimizing conventional
DNN training, in this paper we propose a novel approach
that decouples structural information (non-linear functions)
from quantitative knowledge (model parameters), and pro-
vide strong experimental evidence to demonstrate that these
two types of knowledge can be trained independently. We
evidence that ReLU-based DNNs can be deployed as globally
linear models, from which different parts of the DNN are
active for each sample, thus emulating the piece-wise linear
outputs generated by ReLU activation functions. Leverag-
ing this linear model foundation, this kind of DNN supports
various objectives, including faster re-training times and
combining multiple copies trained on different datasets for
incremental and federated re-training.

CCS Concepts: • Computing methodologies→ Neural
networks; Learning linear models.
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1 Introduction
Deep Learning (DL) has become a highly effective solution
for addressing a growing number of challenges. Neverthe-
less, the time and energy costs to train complex Deep Neural
Networks (DNNs) are growing over time [2, 5], outpacing
the computational advances contributed by hardware accel-
erators in recent years [10, 12, 17].
The massive training costs of DNNs stem from several

factors. To achieve accurate recognition of complex features,
DNNs must undergo extensive training on large datasets
with sophisticated architectures that have numerous tunable
parameters. Consequently, training complex DNNs requires
a large number of arithmetic operations, typically using the
conventional Stochastic Gradient Descent (SGD) or any of its
variants. This is partly due to challenges like the vanishing
gradient problem, which leads to slow convergence, and the
need for techniques to avoid getting trapped in local min-
ima. While non-linearities in DNNs are crucial for capturing
real-world phenomena, they also increase the computational
demands and training time for large networks.
In addition to the previous discussion, for many appli-

cations data evolves dynamically over time, necessitating
re-training. The consequence is that, since DNNs learn via
some method that minimizes a loss function, all the training
samples must be processed every time the DNN is re-trained.
(Otherwise, re-training usually leads to forgetting the contri-
bution of the oldest samples.) Therefore, re-training is costly
and difficult to implement without processing older samples
or without disruption, asking for a fundamentally different
approach to that employed in conventional DNN training.
Focusing on these problems, we propose a linear model

that emulates the piece-wise linear behavior of DNNs that
use Rectified Linear Units (ReLUs) as activation functions.
The method activates a specific subset of the linear model
for each sample, separating the information needed to select
the active subset (referred to as Structural Knowledge (SK))
from the full set of model parameters (referred to as Quanti-
tative Knowledge (QK)). This design enables simpler, faster,
and more environmentally-friendly training and re-training.
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A key feature is that the QK excludes activation functions,
containing only linear relationships, which can open new ad-
vances in order to significantly reduce the cost of re-training.

The pivotal question we address in this work is whether
the SK can be kept unmodified when re-training the QK of
a DNN without significant loss in validation accuracy. In
doing so, we make the following contributions:

• We define some fundamental DNN concepts related
to active paths and activation patterns that form the
foundation of a Proof-of-Concept (PoC) Artificial In-
telligence (AI) system.

• Wemotivate our hypothesis for decoupling the SK and
QK of a DNN. Basically, SK refers to the ability of the
network to activate and deactivate paths, while QK
refers to the numerical weight and bias values.

• We validate our hypothesis through a PoC AI system
that separates the SK and QK, comparing the evolu-
tion of both types of knowledge along the training
process, using LeNet-5, AlexNet and VGG8 convolu-
tional DNNs on the CIFAR-10 dataset.

The rest of the paper is organized as follows. Section 2
provides an overview of related work in the field. Section 3
introduces several fundamental concepts and defines the
notions of SK and QK. In Section 4, we explore the separation
of SK and QK within DNNs, starting with a PoC AI system.
Section 5 presents an evaluation and comparative analysis
of the convergence of different DNNs using the knowledge-
separated system, as opposed to the traditional approach.
Finally, Section 6 concludes with some remarks and discusses
future research directions.

2 Related Work
This section provides an overview of the state-of-the-art and
the challenges in DNN re-training algorithms, emphasizing
efficient methods and the incremental learning process.

Incremental learning is a crucial task in many key applica-
tions with evolving data [15]. Significant examples arise in
financial applications such as stock market forecasting [4],
algorithmic trading [9], credit risk assessment [16], portfolio
allocation [1], and asset pricing [20], as well as insurance
risk assessment [13], preventive maintenance [7], and fine-
tuning in natural language processing [21]. In these scenar-
ios, models need to be periodically fine-tuned or re-trained
using both old and new data. However, effective solutions
for incremental training remain an open challenge.
Transfer learning is a widely used technique that estab-

lishes a solid foundation by pre-training the DNN on a dif-
ferent use case and dataset, and then refining its knowl-
edge with a specific dataset, significantly reducing training
time. However, a key challenge with this approach is cata-
strophic forgetting, where previously acquired knowledge is
lost [8, 14]. Several strategies have been proposed to address

this issue, such as memory replay, which combines previ-
ous and new data during re-training or periodic re-trains
using all prior data [18, 22]; parameter adjustment based
on importance [14]; and dynamic adjustments to the DNN
architecture [19, 24].
A key factor in DNN training is the choice of activation

functions. The Gated Linear Unit (GLU) improves upon tra-
ditional functions such as ReLU by introducing a gating
mechanism, defined as𝐺𝐿𝑈 (𝑎, 𝑏) = 𝑎 × 𝜎 (𝑏), where 𝜎 is the
sigmoid function. This mechanism allows dynamic control
of the information flow, mitigating the vanishing gradients
and enhancing the model’s ability to capture complex rela-
tionships [6, 23]. Unlike ReLU, which can suffer from dead
neurons, GLUs improve gradient flow during backpropaga-
tion, leading to more stable and efficient training.
In conclusion, important gaps still remain in the design

of efficient re-training methods for DNNs and in address-
ing challenges of incremental learning such as catastrophic
forgetting. This work proposes a radically different solution
that separates the structural and quantitative knowledge of
the Neural Network (NN) to circumvent the aforementioned
problems.

3 Structural versus Quantitative Knowledge
In this section, we introduce a few concepts that are used to
formulate our hypothesis of separating SK and QK.

3.1 Fundamental concepts
In the following, we use the simple DNNdisplayed in Figure 1
to define a series of concepts.
Activation function. A neuron computes a non-linear

activation function of the sum of the weighted neuron in-
puts plus a bias. The non-linearity enables the NN to learn
complex relationships among the data. The PoC presented
in this work assumes ReLU as the activation function.

Active neuron refers to a neuron whose activation func-
tion produces a positive output for a given input sample. An
inactive neuron produces a zero output, indicating inactivity.

Activation pattern is the set of active neurons for a given
input sample [11]. In practice, samples with similar features
are expected to produce the same pattern.

Active path is a sequence of active neurons in consecutive
layers, with each active neuron being connected to the next
one in the path. The activation pattern for a specific input
sample is defined by the collection of paths it activates. Each
input-output pair may be connected via multiple active paths.
We distinguish between full active paths, which connect
a specific input-output pair; and bias active paths, which
connect the bias from a neuron to a given output; see Figure 1

Pathweight is defined as the product of the weights along
a path (including the bias of the source neuron in the product
for bias paths). For a given sample, an output of a NN can be
expressed as the sum of contributions from all active paths
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Figure 1. Simple NN with active/inactive neurons and paths.
The neurons (𝑛), the weights (𝑤 ) and the bias (𝑏) are an-
notated with the layer number (superscript) and neuron
identifier within the layer (subscript). In this example, the
blue neurons are active and the red neurons inactive.

leading to it, where each contribution is either the product
of the corresponding path weight times the input value for a
full path or just the path weight for a bias path. For example,
the value of the output 𝑜1 in the NN in Figure 1 is given by:
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In this expression, we can observe the contribution of
the two full paths from 𝑖2 to 𝑜1, with the corresponding
path weights given by the product of the weights along
the paths (marked with blue boxes) as well as those of the
bias paths from 𝑛21 to 𝑜1 (marked with green boxes). The
above expression also exposes that the inactive paths have
no contribution to the output.
In general, the information in the NN flows along the

paths and, for a given sample, the associated output value
corresponds to the sum of the contributions from the active
paths leading to that output, regardless of whether or not
these paths partially overlap. The full paths model the con-
tribution of the inputs to the outputs; the bias paths model
the contribution of the neuron biases to the outputs.

3.2 Structural and quantitative knowledge
The proposed PoC AI system formulates the hypothesis that
the knowledge learned by a trained NN can be separated into
two components: Structural Knowledge (SK) and Quanti-
tative Knowledge (QK). SK refers to the information that
the NN has acquired to activate or deactivate a collection of
paths, thus generating specific activation patterns for spe-
cific input samples. It encompasses the ability learned by
the NN to control the information flow through its layers
via the activation functions, resulting in a distinct activation
pattern for each specific input sample. Figure 2 shows this
separation from a mathematical point of view; the SK can be

represented by the values of the derivatives of the neuron
activation functions for the different samples. The SK allows
the NN to effectively leverage its architecture to discriminate
among samples.
In contrast, the QK only encompasses the numerical val-

ues of the neuron weights and biases learnt by the NN that
allow it to generate accurate predictions for specific input
samples, given the corresponding activation patterns. The
QK does not involve the processing of activation functions
(including their derivatives), since the active paths (and ac-
tive neurons) are determined by the SK. Note that when
considering the set of active paths for a given sample, the
NN can be regarded as a linear function.
In general, combining SK and QK enables a NN to effec-

tively model complex non-linear systems. By decoupling the
acquisition of the SK from that of the QK, it becomes possible
1) to design new systems that initially acquire the SK; 2) to
fine-tune the QK while avoiding the complexity of dealing
with non-linearities; and 3) to re-train the NNmultiple times,
keeping the SK constant and updating only the QK, yielding
a lower computational cost.

4 Proof-of-Concept AI System
This section presents a PoC AI system that decouples SK
and QK within a DNN, enabling us to re-train the QK while
keeping constant the SK. We outline the key stages of the
QK re-training process. The PoC uses a DNN-like structure
and a re-training mechanism resembling the one in DNNs.
This approach aims to validate the hypothesis that the two
types of knowledge can indeed be decoupled.

4.1 System Definition
The goal is to reduce the amount of computations required
to re-train a PoC AI system by decoupling SK and QK, pre-
serving the SK while re-training only the QK. This is funda-
mentally different from traditional training, for which both
types of knowledge are updated during re-training.

The new approach is viable because we introduce a strat-
egy to decouple SK from QK and, as proved later, the SK ex-
hibits a high degree of stability across successive re-training
operations with additional samples [11]. The reason for this
behavior lies in that the high-level features of the samples are
typically captured in the early stages of the training process,
while the refinement of the low-level features occurs in later
stages. The stabilization of the activation patterns is thus an
indication that the high-level features have been effectively
learned. In contrast, the fine-tuning of weights and biases,
constituting the QK, enables the network to reduce the loss
function, once the activation patterns are mostly stabilized.
Starting from a given NN, the PoC AI system builds two

copies of such a network. The first copy is used for comput-
ing the derivatives of the neuron activation functions and
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Figure 2. Comparison of structural and quantitative knowledge for the example neural network in Figure 1.
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Figure 3. Diagram of the PoC AI system, including the initial training, path selector and the estimator.

is not updated when re-training the system. Those deriva-
tives (whose values for the ReLU are either 0 or 1) indicate
the activation status of the corresponding neurons, thereby
forming sequences of active neurons known as active paths.
Hence, this copy will be referred to as the path selector.
The second copy uses the derivatives computed by the first
one for both inference and re-training, and its tunable pa-
rameters are updated during re-training. Since the second
copy is used to estimate the system output values, we will
refer to it as the estimator.
In summary, the PoC AI system has the following two

modules: The path selector maintains the SK and is re-
sponsible for obtaining the set of active paths for a sample.
This information is next fed to the estimator. The estimator
contains the QK and is responsible for delivering accurate
inference results for the input sample using the subset of
parameters related to the activation pattern determined by
the path selector.

4.2 Implementation
Next, we describe the experiments conducted during the ini-
tial setup of the PoC AI system and subsequent re-training
iterations with additional samples. Figure 3 illustrates the
workflow devised for the system, delineated into the follow-
ing four phases:

Phase 1: Initial training. In this phase, the NN is initial-
ized either from scratch or leveraging a previous version in
case of re-training. Using an optimizer like SGD and a data

subset of size 𝑛, the NN learns high-level features and sample
distinctions through training a given number of epochs.

Phase 2: Initialization of path selector and estimator.
After the initial training, the path selector receives a copy
of the trained network, that will be frozen unless the SK
becomes outdated. The estimator obtains a version of the
trained NN without activation functions.
Phase 3: Activation pattern acquisition. Before re-

training the estimator in Phase 4, the activation patterns for
all samples, including 𝑛 original inputs and𝑚 new ones, are
obtained by performing inference using the static copy of
the NN in the path selector.
Phase 4: Estimator re-training. The estimator under-

goes knowledge-only re-training using the expanded set of
𝑛 +𝑚 samples and the activation patterns computed by the
path selector in Phase 3. For each batch, a forward pass uses
the activation patterns to determine neuron activity. The loss
function computes deviations, and in the backward pass, the
gradients are obtained using the derivatives extracted from
the activation patterns. SGD is used to re-adjust estimator
weights.

This re-training process implements the fundamental con-
cepts of the newAI system, while being similar to the conven-
tional DNN re-training process. In practice, this re-training
can be significantly faster since the estimator does not in-
clude nonlinear activation functions.
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5 System Validation
In order to validate the proposed re-training system, in
this section we conduct several experiments using the NNs,
LeNet, AlexNet and VGG8, on the CIFAR-10 dataset. The
implementation leverages basic codes that incorporate the
forward and backward methods from the PyDTNN training
framework [3] while TensorFlow v2.6.2 was used for the
initialization and training.

For the PoC hypothesis evaluation, initially each of these
models was pre-trained using the conventional training ap-
proach for 200 epochs, with 𝑛 =1,024 for LeNet and AlexNet,
and 512 samples for VGG8. Additionally, to analyze the im-
pact of the quality of the path selector on the accuracy of the
estimator after the re-training process, the same experiments
were repeated for the same models, pre-trained with 4,096
randomly selected samples from the dataset. For each sub-
sequent re-training experiment with an increasing number
of additional samples (𝑚), our PoC AI system was initial-
ized with two copies of the NN: one for the path selector
and the other for the estimator. The path selector performed
inference using the set of 𝑛 +𝑚 samples and recorded the
activation pattern for each sample. Subsequently, the esti-
mator re-trained the QK with 𝑛 +𝑚 samples, using the SGD
optimizer for 50 epochs. All trainable layers, including con-
volutional and fully-connected layers, as well as batch nor-
malization layers, were trained. Furthermore, the NN copy
used by the estimator does not include activation functions.
Instead, it relies on the activation patterns obtained from the
path selector to determine the active and inactive neurons
for each sample.

To compare the results of our PoC with traditional DNNs
in consecutive re-training experiments with an increasing
number of samples, we re-trained the same models using the
traditional approach, with 𝑛 +𝑚 samples for 50 epochs. This
allows us to assess the effectiveness of our approach against
the conventional training method.

5.1 SK stabilization analysis
One of our hypotheses is that the SK stabilizes during the
initial stages of the training process. This enables the preser-
vation of the SK while re-training only the QK. To validate
this hypothesis, we compare the variations in the activation
patterns throughout the training process.

Figure 4 illustrates these variations alongside the training
and validation loss at each step for AlexNet. The variations
are measured as the difference between active and inactive
paths for each sample in the validation dataset, quantify-
ing the percentage of paths that have changed compared
to the previously trained NN, using the same random seed
for weight initialization and batch shuffling. As shown in
the plot, the activation pattern stabilizes much earlier than
the validation loss, even while the weights are still being
updated. Thus, we can infer that the SK stabilizes within a
few epochs, while the QK continues to evolve.

5.2 QK analysis with successive re-trainings
Figures 5 illustrates the validation accuracy and Categorical
Cross Entropy (CCE) validation loss achieved for the re-
training of all classification layers of LeNet-5, AlexNet and
VGG8 using: 1) Traditional SGD (blue line); and 2) SGD-based
QK-only re-training (red and orange lines).
For both LeNet and AlexNet, as new samples are added

(from 1,024 to 32,768), the accuracy improves at a slightly
slower rate when only the QK is re-trained. This was ex-
pected since the QK-only approach relies on a fixed SK ob-
tained from a small number of samples (1,024). However,
when the SK is re-initialized using 4,096 samples, the accu-
racy achieved is comparable to that of the traditional SGD
algorithm. Nevertheless, it is important to note that the case
that only uses 1,024 samples to obtain the SK still improves
with the re-training step, even if the accuracy line falls be-
low that of the traditional SGD algorithm. The curves of the
CCE validation loss for both the traditional SGD and the QK-
only re-training, using the SK obtained from 1,024 samples,
exhibit similar behavior.

A similar trend is observed for the VGG8 model. However,
due to its more complex architecture, the SK stabilizes with
512 training samples. Beyond that point, the QK re-training
shows slower convergence compared to the traditional SGD-
based approach. While positive results are achieved, a re-
initialization of the SK may be needed to address obsolete
knowledge. Notably, re-training with 4,096 samples yields
nearly similar results to the SGD-based approach.

In summary, these experiments demonstrate the feasibility
and effectiveness of the PoC AI system. The combination
of the path selector module and the estimator has the po-
tential to drastically reduce DNN training time compared to
traditional methods, especially when frequent re-training is
required. This advancement paves the way for optimizing
the training process and achieving better results in DNN
applications across various domains.

6 Concluding Remarks
In this work, we have presented and validated the hypothe-
sis that SK and QK can be decoupled in ReLU-based DNNs
through a novel PoC AI system, improving and reducing
energy consumption performance compared to conventional
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Figure 5. Validation accuracy (left column) and CCE loss (right column) with traditional SGD and quantitative-only re-training
using LeNet-5 (top row), AlexNet (middle row), and VGG8 (bottom row) for the CIFAR-10 dataset.

DNN training and re-training. The system design includes
a path selector, which determines the activation pattern for
each sample; and an estimator, which fine-tunes the weights
and biases of the active paths identified by the path selector
for the samples in the dataset.

The experimental evaluation using AlexNet, LeNet-5 and
VGG8 on the CIFAR-10 dataset offers valuable insights into
the behavior and convergence of the proposed system and
the consequences of decoupling the SK and the QK. First, we
can confirm that during the initial training phase of the NN,
the SK converges to a stable state faster than the QK, and
this SK is sufficient to generate activation patterns that keep
the whole model convergence rate close to that obtained
by the original SGD-based algorithm. Moreover, when re-
training with quantitative information only, the accuracy
improvement rate was slightly lower compared to the tradi-
tional SGD-based re-training. This can be attributed both to
keeping the SK constant and to obtaining it from a smaller
number of samples. However, it is important to note that the
quantitative-only approach showed continuous knowledge
improvement as more samples were added. These results
therefore demonstrate the high potential of updating only
the QK for efficient re-training.

The experiments also revealed that by initializing the SK
using a larger number of samples, the accuracy matches to
that of the traditional SGD-based approach can be achieved.
This finding emphasizes the significance of correctly select-
ing the dataset for the initial training of the path selector. On
a related topic, we plan to analyze the effect of updating the
SK in line with potentially evolving data to keep achieving
high accuracy over time.

Building upon the promising results demonstrated in this
PoC system, we are currently focused on implementing a
fully functional AI system for efficient re-training with new
samples without requiring full dataset processing. Our future
work involves optimizing and comprehensively evaluating
the system’s performance, accuracy, and scalability, compar-
ing it against traditional re-training approaches on diverse
datasets and DNNs architectures. Special attention will be
given to its adaptability towards evolving data distributions
while preserving or improving model accuracy as the system
scales to larger and more complex tasks.
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