
𝛽-GNN: A Robust Ensemble Approach Against Graph
Structure Perturbation

Haci Ismail Aslan
aslan@tu-berlin.de

Technische Universität Berlin
Berlin, Germany

Philipp Wiesner
wiesner@tu-berlin.de

Technische Universität Berlin
Berlin, Germany

Ping Xiong
p.xiong@tu-berlin.de

Technische Universität Berlin
Berlin, Germany

Odej Kao
odej.kao@tu-berlin.de

Technische Universität Berlin
Berlin, Germany

Abstract
Graph Neural Networks (GNNs) are playing an increasingly
important role in the efficient operation and security of com-
puting systems, with applications in workload scheduling,
anomaly detection, and resource management. However,
their vulnerability to network perturbations poses a signif-
icant challenge. We propose 𝛽-GNN, a model enhancing
GNN robustness without sacrificing clean data performance.
𝛽-GNN uses a weighted ensemble, combining any GNN
with a multi-layer perceptron. A learned dynamic weight, 𝛽 ,
modulates the GNN’s contribution. This 𝛽 not only weights
GNN influence but also indicates data perturbation levels,
enabling proactive mitigation. Experimental results on di-
verse datasets show 𝛽-GNN’s superior adversarial accuracy
and attack severity quantification. Crucially, 𝛽-GNN avoids
perturbation assumptions, preserving clean data structure
and performance.

CCS Concepts: • Computing methodologies→ Ensemble
methods; • Mathematics of computing → Graph algo-
rithms.

Keywords: Graph neural networks, graph adversarial at-
tacks, robustness, poisoning attacks, AI security

ACM Reference Format:
Haci Ismail Aslan, PhilippWiesner, Ping Xiong, and Odej Kao. 2025.
𝛽-GNN: A Robust Ensemble Approach Against Graph Structure
Perturbation. In The 5th Workshop on Machine Learning and Systems
(EuroMLSys ’25), March 30-April 3, 2025, Rotterdam, Netherlands.
ACM, New York, NY, USA , 8 pages. https://doi.org/10.1145/3721146.
3721949

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
EuroMLSys ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1538-9/2025/03
https://doi.org/10.1145/3721146.3721949

1 Introduction
GNN applications are rapidly expanding due to advance-
ments in GNN generalization. By leveraging both node at-
tributes and the topology, GNNs perform downstream tasks
(i.e., node classification) more effectively than other mod-
els [6]. Computing systems increasingly rely on reliable and
robust GNNs to improve efficiency in operation as well as
security, for example in network intrusion detection [2],
workload scheduling [14], social networks [9], transporta-
tion systems [18], or chip placement [17]. A key challenge
to achieving this robustness lies in the demonstrated vulner-
ability of GNNs to adversarial attacks. Recent studies have
substantiated these vulnerabilities, showing how attacks can
manipulate the graph structure by adding adversarial noise to
node features or manipulating edges via rewiring [4, 29, 30].
This vulnerability has driven research into GNN robust-

ness, with approaches ranging from model-centric enhance-
ments to data-centric adversarial training.While these strate-
gies aim to mitigate the impact of attacks, they often suffer
from drawbacks, notably scalability issues [10], which per-
sist despite the advancements achieved in training GNNs
at scale [24]. Furthermore, many existing methods focus on
reacting to perturbations rather than detecting them. This
reactive approach can lead to unnecessary graph cleaning
operations, potentially distorting clean graphs and yielding
suboptimal results.
In this work, we introduce 𝛽-GNN, a solution that ad-

dresses these limitations. 𝛽-GNN enhances the robustness
of GNNs by integrating any GNN model with a multi-layer
perceptron (MLP) in a weighted ensemble. Unlike existing
methods, 𝛽-GNN learns a dynamic weighting factor, denoted
as 𝛽 , which adjusts the contribution of the GNNmodel in the
final prediction layer. This not only improves the model’s
ability to withstand adversarial attacks but also provides an
interpretable metric for quantifying the severity of perturba-
tions in the data. Practitioners can leverage this information
to take preventive actions when the data is highly perturbed,
thus offering a proactive approach to GNN robustness. Our
key contributions are as follows.

168

https://orcid.org/0000-0002-3647-5054
https://orcid.org/0000-0001-5352-7525
https://orcid.org/0009-0009-1008-2138
https://orcid.org/0000-0001-6454-6799
https://doi.org/10.1145/3721146.3721949
https://doi.org/10.1145/3721146.3721949
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721146.3721949

EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Aslan et al.

• We propose 𝛽-GNN, a flexible and modular framework
applicable to any GNN architecture. We introduce 𝛽
as a learned parameter that balances model perfor-
mance and robustness, serving as a diagnostic tool for
assessing graph perturbation severity.

• We conduct extensive experiments on both homophilic
and heterophilic datasets, demonstrating that 𝛽-GNN
achieves state-of-the-art results in terms of node clas-
sification accuracy under adversarial conditions.

• We provide a thorough analysis of the learned 𝛽 values,
illustrating how they can be used to track the severity
of attacks and guide response strategies. The reported
results can be reproduced using our open-source im-
plementation1.

The remainder of this paper is structured as follows: In
Section 2, we review the related work and motivation of this
study. Section 3 introduces the 𝛽-GNN model architecture
and its training process. Section 4 presents experimental
results and analysis. Section 5 concludes the paper.

2 Related Work
Adversaries can subtly perturb graph structures or node
features, leading to significant performance degradation in
tasks like node classification and link prediction. In particu-
lar, poisoning attacks, where the graph is manipulated during
the training phase, resulting in poor performance during in-
ference, have been a primary focus of recent research. For
instance, Nettack [29] introduced a targeted poisoning at-
tack designed to modify both the graph structure and node
features. The method seeks to alter a minimal number of
edges and features to misclassify a specific node, without sig-
nificantly disrupting the overall structure of the graph. Net-
tack formulates the attack as a bi-level optimization problem
where the GNN is first trained on the poisoned graph, and
the adversary then evaluates how modifications affect classi-
fication performance. An extended version of Nettack, called
Metattack [30], on the other hand, proposes a more general
and scalable poisoning attack by formulating the problem
as meta-learning [1], where the adversarial perturbations
are optimized in a meta-gradient approach. Unlike Nettack,
Metattack is untargeted and attacks the entire graph.
In response to vulnerabilities exposed by adversarial at-

tacks, several defense strategies have been proposed to en-
hance the robustness of GNNs. These methods either aim
to detect and remove the adversarial perturbations or to
strengthen the GNNmodel itself. To filter out potential adver-
sarial edges before training, GCN-Jaccard [22] calculates the
Jaccard similarity between feature sets of connected nodes
and removes edges with low similarity. This approach as-
sumes that adversarial edges are more likely to connect dis-
similar nodes, however, it causes problems if the adversarial
influence is the opposite, or the data itself is heterophilic.
1https://github.com/AslantheAslan/beta-GNN

Pro-GNN [11] adopts a two-step approach that combines
graph structure learning with adversarial robustness. It for-
mulates the defense as a joint optimization problem, denois-
ing the graph using low-rank approximation and sparsity
constraints while training a robust GNN. However, Pro-GNN
may remove essential structural information along with per-
turbations, potentially degrading performance on the orig-
inal graph. Similarly, since adversarial attacks mainly af-
fect high-rank properties, constructing a low-rank graph
via truncated singular value decomposition (TSVD) [7] im-
proves GNN robustness. This idea is further refined through
reduced-rank topology learning, which preserves only the
dominant singular components of the adversarial adjacency
matrix to maintain the graph spectrum.
Alongside methods that mitigate adversarial impact on

graphs, training-based approaches have also advanced GNN
robustness. RGCN [26] assigns latent variables to nodes,
sampling representations from a Gaussian distribution to
enhance robustness and diversity in feature aggregation. Sim-
ilarly, GNNGuard [25] modifies message passing, reducing
the influence of suspicious nodes during aggregation.
Although these methods improve GNN robustness, they

have disadvantages in practice. Edge-pruning techniques
like GCN-Jaccard can oversimplify graphs, discarding im-
portant connections. Methods such as Pro-GNN and TSVD
rely on assumptions about adversarial perturbations that
may not generalize to all attacks. Additionally, many de-
fenses increase computational complexity, making training
and inference less scalable for large graphs.

3 𝛽-GNN: Learned-Weighted Ensemble of
GNNs and MLP

Unlike the defense methods mentioned above, we propose
ensembling GNNs with a simple MLP, and assigning a learn-
able parameter, 𝛽 , that weighs the output layer embeddings
of the GNN. This approach not only enhances the node clas-
sification accuracy under perturbation but also provides a
tractable parameter to observe the severity of the perturba-
tion during training.

3.1 Problem Formulation
A graph is composed of a set of nodes V , edges E, and at-
tributes representing features for entities in the graph, such
as node attributes 𝒙 𝒊 ∈ R𝑑 . Adversarial attacks on graphs
imply perturbing the graph by exploiting the vulnerabilities
of GNNs, where an adversarial graph G′ = (V, E′,𝑿 ′) is
constructed by implementing small portions of perturbations
to the node features 𝑿 = {𝒙 𝒊}𝑛𝑖=0 or edge set in the clean
graph G = (V, E,𝑿). Mathematically, adversarial attacks
can be framed as an optimization problem where the adver-
sary aims to maximize the loss function L(𝑓Θ (G′), 𝑦), where
Θ denotes the GNN parameters and 𝑦 is the prediction la-
bel. The adversary’s goal is to find a perturbed graph G′, as

169

https://github.com/AslantheAslan/beta-GNN

𝛽-GNN: A Robust Ensemble Approach Against Graph Structure Perturbation EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

defined in (1), while adhering to constraints on the perturba-
tion magnitude, such as limitations on feature modifications
or the number of altered edges:

argmax
G′=(V,E′,𝑿 ′)

L(Θ,G′, 𝑦) (1)

s.t. |ΔE| ≤ 𝑏E, | |𝑿 ′ − 𝑿 | | ≤ 𝑏𝑿 , (2)

where ΔE = |E | + |E′ | − 2|E ∩ E′ | is the number of edges
removed or added, 𝑏E and 𝑏𝑿 are the perturbation budgets.

In the context of adversarial attacks, the robust optimiza-
tion framework modifies the traditional objective

min
Θ

E(G,𝑦)∼D [L(𝑓Θ (G), 𝑦)] , (3)

to the objective

min
Θ

E(G,𝑦)∼D

[
max

G′∈P(G)
L(𝑓Θ (G′), 𝑦)

]
. (4)

This follows from the definition where L(Θ,G, 𝑦) denotes
the loss function, D represents the data distribution from
which samples (G, 𝑦) are drawn, and P(G) is the set of
allowable perturbed graphs within a given budget. The term
maxG′∈Δ(G) L(𝑓Θ (G′), 𝑦) captures the worst-case loss under
potential adversarial perturbations. Equation (1) can thus be
interpreted as a graph-specific instance of this formulation.

Robust optimization aims to find model parameters Θ that
minimize the worst-case loss to avoid performance degrada-
tion under adversarial conditions.

3.2 Learned-Weighted Ensembling
To overcome the poisoning attacks and assess attack sever-
ity, we propose ensembling any target GNN with an MLP
by calculating the weighted averages of their outputs in the
ensemble model, where the weight 𝛽 is learned during the
training process. This intuition comes from the proven ef-
fectiveness of ensembling [23] to avoid perturbations and
elaborates on how to merge the ensembled models. Consid-
ering Ψ represents the parameters of MLP, where we have
𝑦GNN = 𝑓Θ (G) and 𝑦MLP = 𝑔Ψ (𝑿) , the final output of the
𝛽-GNN can be expressed as

𝑦 = 𝛽 · 𝑦GNN + (1 − 𝛽) · 𝑦MLP. (5)

Following (4) and (5), the 𝛽-GNN’s robust optimization
problem can be expressed as

min
Θ,Ψ,𝛽

E(G,𝑦)∼D

[
max

G′∈P(G)
L
(
𝛽 · 𝑓Θ (G′)

+ (1 − 𝛽) · 𝑔Ψ (𝑿 ′), 𝑦
)]
.

(6)

First, we consider a single sample and derive the optimal
value for 𝛽 . By rewriting the loss function L in (6), and de-
riving it with respect to 𝛽 , we express the loss L(𝛽) as a
function of 𝛽 , as shown in (7). This implies that if the predic-
tions of the GNN and the MLP are identical, the derivative
of the loss with respect to 𝛽 is always zero. Consequently, 𝛽

Table 1. Details of graph datasets used in our experiments.

Dataset Type Homophily Score # Nodes # Edges Classes Features
Cora Homophily 0.80 2,485 5,069 7 1,433

Pubmed Homophily 0.80 19,717 44,324 3 500
Chameleon Heterophily 0.23 2,277 62,792 5 2,325
Squirrel Heterophily 0.22 5,201 396,846 5 2,089

does not influence the loss and can take any value. This also
indicates that 𝛽 does not affect the predicted value 𝑦.

𝜕L
𝜕𝛽

=
𝜕L
𝜕𝑦

𝜕𝑦

𝜕𝛽
=
𝜕L
𝜕𝑦

(𝑓Θ (G′) − 𝑔Ψ (𝑿 ′)) , (7)

In the case where the prediction of GNN and MLP are
different, 𝜕L

𝜕𝛽
= 0 only when 𝜕L

𝜕�̂�
= 0, which for many loss

functions means 𝑦 = 𝑦. Thus, it can be deduced that 𝛽 is only
being learned actively when these models generate different
predictions.
As adversarial attacks make the GNN’s output less reli-

able by altering the graph structure, the model adjusts 𝛽 to
downweight the underlying GNN block and rely more on the
output embeddings of the MLP, which primarily works on
node features. Similarly, if the node features are under attack,
the model expects the opposite behavior. In both cases, com-
paring the learned 𝛽 values for clean and perturbed cases
during training tells practitioners about how likely the data
is perturbed or the severity of the perturbation.

4 Experiments and Results
4.1 Experimental Setup
We conducted the experiments using gradient clipping in
PyTorch on a single RTX 5000 GPU with 16 GB of memory.
The reported test results correspond to accuracy on the test
set when the highest validation accuracy was recorded. For
simplicity, we considered 10% and 20% perturbation rates for
Metattack and 1–5 edge perturbations per node for Nettack.

Datasets. To evaluate our approach, we run experiments
on widely-used benchmark datasets with varying character-
istics. Table 1 presents the key statistics of these datasets, as
also reported in [5]. Among these datasets, Cora [16] and
Pubmed [20] are citation networks where nodes represent
academic papers, edges denote citations, and node features
are derived from paper content. Chameleon and Squirrel are
web networks extracted from Wikipedia, where nodes rep-
resent web pages and edges indicate mutual links between
pages [19]. Node features are based on several informative
statistics, including average monthly traffic, and text length.
These heterophilic datasets are particularly challenging [27]
due to their nature, where connected nodes often belong to
different classes, such as network traffic graphs in security
systems [28], and hardware fault detection graphs [15].

170

EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Aslan et al.

Baselines. We compare our ensemble approach against
three state-of-the-art GNN architectures. The Graph Convo-
lutional Network (GCN) [12] serves as our primary baseline,
leveraging first-order spectral graph convolutions through
neighborhood aggregation. Second, the Graph Attention Net-
work (GAT) [21] enhances GCN by using attention mecha-
nisms to assign different weights to neighbors, improving
message passing. Lastly, the Graph PageRank Neural Net-
work (GPRGNN) [3] integrates PageRank into GNNs for
greater robustness against heterophily and over-smoothing.
To ensure a fair comparison, we tune each model’s hyperpa-
rameters on the validation set of clean graphs, preventing
any implicit adaptation to attacks or noise.

Lastly, we compare 𝛽-GNN against Pro-GNN, GCN-SVD [8],
RGCN, and GCN-Jaccard, to evaluate the effectiveness of the
proposed method against other robust GNN models. For
heterophilic graphs, GCN-Jaccard implementation returns
division by zero error, due to the isolated nodes or regions
in the graph. Thus, for Chameleon and Squirrel datasets,
we modify GCN-Jaccard so that it assigns zero value to the
similarity when similarity cannot be calculated due to the
division by zero error. We follow the suggested hyperparam-
eters given in [13] for all benchmark models.

Graph adversarial attacks. To assess the node classifi-
cation performance of 𝛽-GNN under perturbations, we con-
sider the following attack strategies:

• Untargeted attacks.We employ a foundational tar-
geted attack method, Mettack, to reduce the perfor-
mance of GNNs on the entire graph [30].

• Targeted attacks. Targeted attacks perform perturba-
tions on specific nodes to mislead GNNs. We followed
Nettack [29] as the untargeted attack method and ob-
tained the perturbed graphs from [5, 11]. For targeted
attacks, the test set only includes the target nodes.

Adversarial attacks can be categorized into two distinct
settings: poisoning, where the graph is perturbed before the
GNN is trained, and evasion, where perturbations are applied
after the GNN has been trained. Defending against attacks in
the poisoning setting is generally more challenging because
the altered graph structure directly influences the training
process of the GNN [27]. Consequently, our focus is directed
toward strengthening model robustness against adversarial
attacks in the poisoning setting.
We utilize 10% of the nodes for training, another 10% for

validation, and the remaining 80% for the test set as a stan-
dard split ratio in robustness studies in GNNs [11]. All per-
turbations are applied exclusively to the edges, while the
node features and labels remain unaffected.

4.2 Results
Table 2 reports the averaged accuracy and standard deviation
over 10 training runs when graphs are under targeted attack,
whereas Table 3 reports the results under untargeted attack.

Figure 1. Trajectory of beta values on Pubmed. Left: Net-
tack. Right: Metattack. Rows: GCN, GPRGNN, GAT (top to
bottom).

For homophilic graphs, where similar nodes are linked, it
can be deduced that 𝛽-GNN gains up to 14.25% of test accu-
racy, compared to the baseline GNN models. However, in the
case of heterophilic graphs, where dissimilar nodes are con-
nected, 𝛽-GNN does not lead to a significant improvement in
performance. These results suggest that while 𝛽-GNN offers
benefits across graph types, the challenges posed by weak
label correlations in heterophilic graphs require further in-
vestigation. Nonetheless, it either enhances test accuracy or
performs comparably to the baseline models.
Furthermore, the learnable weight of the averaging vari-

able, 𝛽 , is tracked during training, as depicted by Fig. 1. The
intuition that 𝛽 can serve as an effective parameter for as-
sessing attack severity is supported by the observation that,
in most cases, 𝛽 values are distinguishable for clean graphs.
This trajectory also shows that the severity levels can be dis-
tinguishable either, considering how 𝛽 varied between differ-
ent perturbation rates, i.e. for all models under Metattack in
Fig. 1. The early estimation of 𝛽 allows practitioners to iden-
tify the presence and severity of adversarial attacks during
the initial stages of the training process, enabling proactive
measures to improve model robustness before training is
completed.

171

𝛽-GNN: A Robust Ensemble Approach Against Graph Structure Perturbation EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 2. Node classification accuracy (%) and standard deviation under Nettack with perturbation budget of 1.0 to 5.0.

Model MLP GCN GAT GPRGNN
Vanilla Vanilla 𝜷-GNN Vanilla 𝜷-GNN Vanilla 𝜷-GNN

Cora-0 59.28 ± 2.03 80.36 ± 1.71 81.93 ± 1.70 80.00 ± 1.90 81.45 ± 1.52 82.41 ± 214 81.20 ± 2.55
Cora-1 60.72 ± 4.72 75.42 ± 1.90 79.28 ± 1.87 78.31 ± 1.50 77.35 ± 2.71 78.80 ± 262 80.24 ± 2.79
Cora-2 59.88 ± 2.61 69.64 ± 1.37 74.46 ± 1.95 72.29 ± 2.60 70.24 ± 3.11 74.22 ± 2.21 75.90 ± 1.97
Cora-3 59.76 ± 4.06 64.70 ± 1.80 70.36 ± 0.84 66.14 ± 2.87 67.95 ± 3.07 71.20 ± 2.98 72.41 ± 2.75
Cora-4 58.67 ± 3.11 60.12 ± 1.84 63.49 ± 0.81 60.24 ± 4.13 61.08 ± 4.10 66.39 ± 2.00 69.76 ± 3.43
Cora-5 60.24 ± 3.77 52.77 ± 1.68 63.98 ± 2.08 55.06 ± 3.73 59.04 ± 4.25 60.48 ± 3.63 65.06 ± 3.06

Pubmed-0 85.91 ± 0.42 90.22 ± 0.34 92.53 ± 0.93 89.95 ± 0.72 89.30 ± 0.59 91.40 ± 0.91 91.88 ± 1.03
Pubmed-1 85.59 ± 0.34 86.99 ± 0.87 90.65 ± 0.96 87.80 ± 0.72 88.01 ± 1.13 88.60 ± 0.83 89.62 ± 0.67
Pubmed-2 85.65 ± 0.36 85.38 ± 0.49 88.76 ± 1.06 85.00 ± 0.78 86.45 ± 1.16 86.40 ± 0.62 87.65 ± 0.84
Pubmed-3 85.54 ± 0.40 83.12 ± 0.58 86.77 ± 0.68 82.10 ± 1.60 86.88 ± 0.58 83.87 ± 0.95 85.81 ± 0.85
Pubmed-4 85.91 ± 0.34 76.45 ± 0.91 85.00 ± 0.86 79.35 ± 1.05 85.27 ± 0.77 80.81 ± 1.13 83.06 ± 1.25
Pubmed-5 85.75 ± 0.28 68.87 ± 1.23 83.12 ± 1.37 71.67 ± 1.43 84.30 ± 2.64 77.31 ± 0.71 83.87 ± 1.52

Chameleon-0 46.46 ± 2.03 78.17 ± 1.07 76.83 ± 1.99 74.39 ± 1.91 74.88 ± 2.45 75.73 ± 3.07 75.61 ± 2.63
Chameleon-1 46.59 ± 2.06 73.17 ± 1.29 72.44 ± 2.24 72.93 ± 2.92 73.54 ± 2.51 71.10 ± 1.63 74.02 ± 1.53
Chameleon-2 46.46 ± 1.86 67.32 ± 1.12 67.93 ± 1.91 70.98 ± 3.14 68.66 ± 1.63 67.44 ± 2.51 70.37 ± 2.76
Chameleon-3 47.20 ± 1.73 63.78 ± 0.82 64.27 ± 1.29 68.29 ± 4.88 67.07 ± 3.25 66.34 ± 2.94 70.61 ± 3.07
Chameleon-4 47.32 ± 2.62 63.05 ± 0.59 61.95 ± 2.06 65.49 ± 4.19 64.51 ± 3.61 65.37 ± 2.58 70.00 ± 2.38
Chameleon-5 47.80 ± 2.62 61.46 ± 1.03 61.10 ± 1.67 64.51 ± 4.12 62.56 ± 3.77 63.54 ± 5.70 65.37 ± 2.58
Squirrel-0 28.82 ± 1.82 30.64 ± 2.10 29.45 ± 1.43 30.82 ± 6.16 28.82 ± 1.22 45.09 ± 1.61 42.36 ± 2.51
Squirrel-1 29.82 ± 2.38 27.18 ± 1.63 29.73 ± 3.32 25.73 ± 3.56 29.82 ± 1.12 43.55 ± 1.89 40.82 ± 1.94
Squirrel-2 31.18 ± 2.19 29.36 ± 1.14 29.39 ± 2.87 24.45 ± 3.47 29.27 ± 1.47 42.64 ± 2.55 41.18 ± 1.72
Squirrel-3 28.18 ± 3.78 27.91 ± 2.88 27.36 ± 1.98 23.55 ± 6.05 29.64 ± 1.50 42.09 ± 2.78 43.00 ± 3.98
Squirrel-4 29.55 ± 2.79 29.55 ± 0.64 28.09 ± 2.44 24.09 ± 3.35 30.36 ± 0.98 42.45 ± 2.54 41.45 ± 1.50
Squirrel-5 28.27 ± 3.62 29.55 ± 2.88 28.82 ± 1.92 21.82 ± 3.51 28.64 ± 1.83 42.55 ± 1.47 44.45 ± 3.25

Table 3. Node classification accuracy (%) and standard deviation under Metattack with perturbation ratio 0.0 to 0.2.

Model MLP GCN GAT GPRGNN
Vanilla Vanilla 𝜷-GNN Vanilla 𝜷-GNN Vanilla 𝜷-GNN

Cora-0 62.27 ± 1.77 83.64 ± 0.81 83.18 ± 0.85 83.71 ± 0.56 83.47 ± 0.72 83.69 ± 0.71 83.51 ± 0.73
Cora-0.1 63.52 ± 1.32 74.78 ± 0.94 76.73 ± 0.38 76.80 ± 0.75 76.55 ± 0.99 76.87 ± 0.88 79.07 ± 0.79
Cora-0.2 63.30 ± 1.74 58.73 ± 0.71 68.56 ± 2.36 60.60 ± 2.40 70.26 ± 1.73 69.15 ± 3.44 74.75 ± 0.56
Pubmed-0 84.43 ± 0.24 87.14 ± 0.05 87.76 ± 0.28 85.65 ± 0.22 87.15 ± 0.23 88.43 ± 0.27 88.37 ± 0.14
Pubmed-0.1 84.47 ± 0.22 81.20 ± 0.08 86.85 ± 0.14 80.46 ± 0.35 86.15 ± 0.12 87.42 ± 0.14 87.39 ± 0.18
Pubmed-0.2 84.34 ± 0.22 77.17 ± 0.19 86.34 ± 0.18 76.36 ± 0.24 85.18 ± 0.24 86.72 ± 0.25 86.81 ± 0.22
Chameleon-0 48.45 ± 0.75 67.37 ± 0.49 64.90 ± 0.98 65.25 ± 0.78 61.88 ± 1.30 68.84 ± 0.49 68.82 ± 0.80
Chameleon-0.1 47.75 ± 0.80 53.44 ± 0.92 54.88 ± 1.27 52.39 ± 1.70 52.63 ± 1.22 62.23 ± 1.03 62.93 ± 0.53
Chameleon-0.2 48.34 ± 0.80 51.51 ± 0.84 52.71 ± 1.12 48.75 ± 1.41 50.61 ± 1.62 59.61 ± 1.04 60.28 ± 1.03

Squirrel-0 33.65 ± 0.89 58.40 ± 0.77 59.58 ± 0.71 46.04 ± 2.25 42.67 ± 1.44 53.79 ± 0.67 53.94 ± 0.66
Squirrel-0.1 33.47 ± 0.78 47.45 ± 0.70 48.64 ± 0.75 41.84 ± 0.88 40.97 ± 2.18 46.05 ± 1.07 47.17 ± 0.55
Squirrel-0.2 33.78 ± 0.77 42.65 ± 0.81 42.97 ± 2.81 39.29 ± 1.83 39.43 ± 2.28 43.17 ± 0.87 44.05 ± 0.81

Fig. 1 also shows a result that contradicts the intuition
behind learning the 𝛽 values, when GAT is used as the back-
bone model under Nettack attack on the Pubmed dataset.
This is particularly interesting because, despite 𝛽-GNN show-
ing significant performance improvement over vanilla GAT
(84.30% vs 71.67% accuracy for 5-edge perturbations), the 𝛽

values do not show a clear separation between clean and per-
turbed cases. This suggests that while the ensemble model
effectively enhances model robustness, the mechanism of
improvement might be different from other backbone ar-
chitectures. Rather than clearly down-weighting the GAT
component under attack, the model might be finding a more
complex integration strategy between GAT and MLP that

172

EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Aslan et al.

Table 4. Benchmark of defense methods against Nettack. OOM refers to out-of-memory error due to the high GPU memory
requirements of particular models.

Model Cora Pubmed Chameleon Squirrel
Clean Perturbed Clean Perturbed Clean Perturbed Clean Perturbed

GCN-Vanilla 80.36 ± 1.71 52.77 ± 1.68 90.22 ± 0.34 68.87 ± 1.23 78.17 ± 1.07 61.46 ± 1.03 30.64 ± 2.10 29.55 ± 2.88
GCN-SVD 81.81 ± 1.05 60.72 ± 1.41 OOM OOM 65.00 ± 0.59 61.95 ± 1.12 26.45 ± 2.20 22.64 ± 1.79
GCN-Jaccard 78.43 ± 1.92 64.10 ± 3.76 90.65 ± 0.38 70.43 ± 2.04 65.85 ± 1.82 60.61 ± 1.29 25.91 ± 1.56 24.27 ± 1.49
RGCN 80.36 ± 1.40 56.63 ± 2.48 OOM OOM 67.80 ± 2.52 50.85 ± 4.03 32.27 ± 2.62 16.27 ± 1.25
Pro-GNN 84.46 ± 1.44 58.55 ± 2.14 OOM OOM 76.46 ± 2.57 61.71 ± 1.54 37.55 ± 1.87 24.36 ± 6.55
𝛽-GNN 81.20 ± 2.55 65.06 ± 3.06 91.88 ± 1.03 83.87 ± 1.52 75.61 ± 2.63 65.37 ± 2.58 42.36 ± 2.51 44.45 ± 3.25

Table 5. Benchmark of defense methods against Metattack.

Model Cora Pubmed Chameleon Squirrel
Clean Perturbed Clean Perturbed Clean Perturbed Clean Perturbed

GCN-Vanilla 83.64 ± 0.81 58.73 ± 0.71 87.14 ± 0.05 77.17 ± 0.19 67.37 ± 0.49 51.51 ± 0.84 58.40 ± 0.77 42.65 ± 0.81
GCN-SVD 78.37 ± 3.49 61.45 ± 1.64 OOM OOM 47.81 ± 0.31 37.72 ± 1.36 31.96 ± 0.48 23.01 ± 0.76
GCN-Jaccard 80.73 ± 0.61 74.07 ± 0.87 87.08 ± 0.07 78.08 ± 0.11 54.53 ± 0.46 48.03 ± 0.65 35.83 ± 0.73 34.30 ± 0.57
RGCN 83.47 ± 0.34 57.71 ± 0.43 OOM OOM 56.64 ± 0.67 41.93 ± 1.43 35.96 ± 0.93 28.79 ± 0.74
Pro-GNN 84.72 ± 0.36 57.11 ± 0.06 OOM OOM 66.54 ± 1.64 54.88 ± 0.86 48.21 ± 4.29 30.05 ± 0.71
𝛽-GNN 83.69 ± 0.71 74.75 ± 0.56 88.37 ± 0.14 86.81 ± 0.22 68.82 ± 0.80 60.28 ± 1.03 53.94 ± 0.66 44.05 ± 0.81

leverages GAT’s attention mechanism in conjunction with
MLP’s feature processing, even under perturbation.

In addition to the experiments that compare the proposed
method against the vanilla backbone models, we compare
𝛽-GNN against other defense methods. Table 4 and 5 present
the benchmark results, where GPRGNN is used as the back-
bone for the proposed method due to its excellent perfor-
mance on heterophilic datasets. For simplicity, we only present
results for perturbed graphs with a perturbation budget of 5
edges per target node for Nettack, and a perturbation ratio
of 20% for Metattack in Table 4 and 5.

4.3 Complexity Analysis
Computational efficiency is crucial to real-world applicability
of defense methods. Herein, we analyze the time and space
complexity of 𝛽-GNN and other defense models. Let 𝑇 be
the number of iterations in Pro-GNN’s optimization process,
𝑁 be the number of nodes,𝑀 be the number of edges, 𝐾 be
the number of graph convolutional layers, 𝐹 be the feature
dimension, 𝐻 be the hidden layer dimension, and 𝑘 be the
number of top singular vectors retained in GCN-SVD.

• Pro-GNN introduces significant computational over-
head through iterative structure learning, rendering
it impractical for large-scale graphs. With our exper-
imental setup, Pro-GNN takes almost 2 days to train
on Squirrel graph to produce the reported results. Its
time complexity is 𝑂 (𝑇 (𝑁 3 + 𝐾𝑀𝑁), and its space
complexity is 𝑂 (𝑁 2).

• GCN-Jaccard is comparably better than other bench-
marks in terms of its time complexity. However, the
quadratic edge similarity computation limits its scala-
bility for dense graphs. Furthermore, its performance

on heterophilic graphs is even lower than GCN-Vanilla,
according to Table 4 and 5. Its time complexity and
space complexity can be expressed as 𝑂 (𝑀2 + 𝐾𝑀𝑁)
and 𝑂 (𝑀 + 𝑁𝐹), respectively.

• RGCN introduces additional computational complex-
ity through Gaussian-based graph learning. Along
with Pro-GNN and GCN-SVD, RGCN cannot scale to
larger graphs, as evidenced by our evaluations on the
Pubmed dataset, where it results in an out-of-memory
error. The time complexity of RGCN is𝑂 (𝐾𝑀𝑁+𝐾𝑁 2),
whereas its space complexity is 𝑂 (𝑁 2 +𝑀)

• GCN-SVD introduces cubic complexity due to apply-
ing singular value decomposition, severely restricting
scalability. Computing the full matrix eigendecompo-
sition requires 𝑂 (𝑁 3) computation complexity and
results in a high time complexity 𝑂 (𝑁 3 + 𝐾𝑀𝑁) for
GCN-SVD. Its space complexity is 𝑂 (𝑘𝑁 +𝑀), where
𝑘 needs to increase as the graph size grows.

• 𝛽-GNNmethod achieves linear scalability by avoiding
expensive graph structure preprocessing. The time
complexity of the proposedmethod is𝑂 (𝐾𝑀𝐻+𝐹𝑁𝐻),
while its space complexity is 𝑂 (𝑀 + 𝑁𝐹).

We observe that cubic complexity models (Pro-GNN, GCN-
SVD) become impractical for graphs with 𝑁 > 10, 000 nodes.
Similarly, quadratic models (RGCN) face significant perfor-
mance degradation. In contrast, 𝛽-GNN, as a linear complex-
ity model, maintains consistent performance across varying
graph scales.

5 Conclusion
In this work, we introduced 𝛽-GNN, a novel approach

to enhance GNN robustness by dynamically weighting the

173

𝛽-GNN: A Robust Ensemble Approach Against Graph Structure Perturbation EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

contribution of a base GNN model and an MLP through a
learned 𝛽 parameter. This ensemble method not only im-
proves resilience against adversarial attacks but also pro-
vides an interpretable measure of data perturbation severity.
Our experiments demonstrate the effectiveness of 𝛽-GNN
in improving node classification accuracy under attack, par-
ticularly in preserving performance on unperturbed data
structures. The linear computational complexity of 𝛽-GNN
offers a significant advantage for scalability in large-scale
applications.
While 𝛽-GNN demonstrates promising results, it is not

without limitations. Specifically, while the learned 𝛽 values
often provide a clear distinction between clean and perturbed
data instances, this separation is not always guaranteed. In
some cases, the tracks of 𝛽 values for clean and perturbed
data can intertwine, making it challenging to definitively
distinguish between them. Future work will address this lim-
itation by investigating methods to improve the separation
of 𝛽 value tracks, potentially through incorporating addi-
tional features or constraints during the learning process.
This could involve exploring more sophisticated regulariza-
tion techniques or examining the influence of different base
GNN architectures on the behavior of 𝛽 .

Acknowledgments
This paper was supported by the Swarmchestrate project

of the European Union’s Horizon 2023 Research and Innova-
tion programme under grant agreement no. 101135012.

References
[1] M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman, D.

Pfau, T. Schaul, et al. 2016. Learning to learn by gradient descent by
gradient descent. In Proceedings of the 30th International Conference
on Neural Information Processing Systems (Barcelona, Spain) (NIPS’16).
Curran Associates Inc., Red Hook, NY, USA, 3988–3996.

[2] Tristan Bilot, Nour El Madhoun, Khaldoun Al Agha, and Anis Zouaoui.
2023. Graph Neural Networks for Intrusion Detection: A Survey. IEEE
Access 11 (2023), 49114–49139. doi:10.1109/ACCESS.2023.3275789

[3] E. Chien, J. Peng, P. Li, and O. Milenkovic. 2021. Adaptive Universal
Generalized PageRank Graph Neural Network. In International Con-
ference on Learning Representations. https://openreview.net/forum?
id=n6jl7fLxrP

[4] Enyan Dai, Tianxiang Zhao, Huaisheng Zhu, Junjie Xu, Zhimeng Guo,
Hui Liu, Jiliang Tang, and Suhang Wang. 2024. A comprehensive
survey on trustworthy graph neural networks: Privacy, robustness,
fairness, and explainability. Machine Intelligence Research (2024), 1–51.

[5] C. Deng, X. Li, Z. Feng, and Z. Zhang. 2022. GARNET: Reduced-Rank
Topology Learning for Robust and Scalable Graph Neural Networks.
In Proceedings of the First Learning on Graphs Conference, Vol. 198.
3:1–3:23. https://proceedings.mlr.press/v198/deng22a.html

[6] V. Di Massa, G. Monfardini, L. Sarti, F. Scarselli, M. Maggini, and M.
Gori. 2006. A Comparison between Recursive Neural Networks and
Graph Neural Networks. In The 2006 IEEE International Joint Confer-
ence on Neural Network Proceedings. Vancouver, BC, Canada, 778–785.
doi:10.1109/IJCNN.2006.246763

[7] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and E. E. Papalexakis.
2020. All You Need Is Low (Rank): Defending Against Adversarial
Attacks on Graphs. In Proceedings of the 13th International Conference

on Web Search and Data Mining (Houston, TX, USA) (WSDM ’20).
Association for Computing Machinery, New York, NY, USA, 169–177.
doi:10.1145/3336191.3371789

[8] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and E. E. Papalexakis.
2020. All You Need Is Low (Rank): Defending Against Adversarial
Attacks on Graphs. In Proceedings of the 13th International Conference
on Web Search and Data Mining (Houston, TX, USA) (WSDM ’20).
Association for Computing Machinery, New York, NY, USA, 169–177.
doi:10.1145/3336191.3371789

[9] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. 2019. Graph
Neural Networks for Social Recommendation. In The World Wide Web
Conference (San Francisco, CA, USA) (WWW ’19). Association for
Computing Machinery, New York, NY, USA, 417–426. doi:10.1145/
3308558.3313488

[10] S. Geisler, T. Schmidt, H. Şirin, D. Zügner, A. Bojchevski, and S. Günne-
mann. 2021. Robustness of Graph Neural Networks at Scale. In Neural
Information Processing Systems, NeurIPS.

[11] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, SuhangWang, and Jiliang
Tang. 2020. Graph Structure Learning for Robust Graph Neural Net-
works. In 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2020. Association for Computing
Machinery, 66–74.

[12] T. N. Kipf and M. Welling. 2016. Semi-Supervised Classification
with Graph Convolutional Networks. CoRR abs/1609.02907 (2016).
arXiv:1609.02907 http://arxiv.org/abs/1609.02907

[13] Y. Li, W. Jin, H. Xu, and J. Tang. 2020. DeepRobust: A PyTorch Library
for Adversarial Attacks and Defenses. CoRR abs/2005.06149 (2020).
arXiv:2005.06149 https://arxiv.org/abs/2005.06149

[14] Chien-Liang Liu and Tzu-Hsuan Huang. 2023. Dynamic Job-Shop
Scheduling Problems Using Graph Neural Network and Deep Rein-
forcement Learning. IEEE Transactions on Systems, Man, and Cybernet-
ics: Systems 53, 11 (2023), 6836–6848. doi:10.1109/TSMC.2023.3287655

[15] S. Liu, X. Zhou, J. Yu, Y. Wang, T. Xu, and H. Wang. 2024. Graph
Attention Network-Based Model for Multiple Fault Detection and
Identification of Sensors in Nuclear Power Plant. Nuclear Engineering
and Design 419 (2024), 112949. doi:10.1016/j.nucengdes.2024.112949

[16] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore. 2000. Au-
tomating the construction of internet portals with machine learning.
Information Retrieval 3 (2000), 127–163.

[17] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi, et al. 2021. A graph placement
methodology for fast chip design. Nature 594, 7862 (2021), 207–212.

[18] S. Rahmani, A. Baghbani, N. Bouguila, and Z. Patterson. 2023. Graph
Neural Networks for Intelligent Transportation Systems: A Survey.
IEEE Transactions on Intelligent Transportation Systems 24, 8 (2023),
8846–8885. doi:10.1109/TITS.2023.3257759

[19] B. Rozemberczki, C. Allen, and R. Sarkar. 2021. Multi-Scale Attributed
Node Embedding. Journal of Complex Networks 9, 2 (April 2021).
doi:10.1093/comnet/cnab014

[20] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad.
2008. Collective classification in network data. AI magazine 29, 3
(2008), 93–93.

[21] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y.
Bengio. 2018. Graph Attention Networks. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=
rJXMpikCZ

[22] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai
Lu, and Liming Zhu. 2019. Adversarial Examples for Graph Data:
Deep Insights into Attack and Defense. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.
International Joint Conferences on Artificial Intelligence Organization,
4816–4823. doi:10.24963/ijcai.2019/669

[23] X. Wu, H. Wu, X. Zhou, X. Zhao, and K. Lu. 2022. Towards defense
against adversarial attacks on graph neural networks via calibrated

174

https://doi.org/10.1109/ACCESS.2023.3275789
https://openreview.net/forum?id=n6jl7fLxrP
https://openreview.net/forum?id=n6jl7fLxrP
https://proceedings.mlr.press/v198/deng22a.html
https://doi.org/10.1109/IJCNN.2006.246763
https://doi.org/10.1145/3336191.3371789
https://doi.org/10.1145/3336191.3371789
https://doi.org/10.1145/3308558.3313488
https://doi.org/10.1145/3308558.3313488
https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2005.06149
https://arxiv.org/abs/2005.06149
https://doi.org/10.1109/TSMC.2023.3287655
https://doi.org/10.1016/j.nucengdes.2024.112949
https://doi.org/10.1109/TITS.2023.3257759
https://doi.org/10.1093/comnet/cnab014
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.24963/ijcai.2019/669

EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Aslan et al.

co-training. Journal of Computer Science and Technology 37, 5 (2022),
1161–1175.

[24] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong
Chen, Wenyuan Yu, and Jingren Zhou. 2022. GNNLab: a factored
system for sample-based GNN training over GPUs (EuroSys ’22). As-
sociation for Computing Machinery, New York, NY, USA, 417–434.
doi:10.1145/3492321.3519557

[25] X. Zhang and M. Zitnik. 2020. GNNGuard: Defending Graph Neural
Networks against Adversarial Attacks. In NeurIPS.

[26] D. Zhu, Z. Zhang, P. Cui, and W. Zhu. 2019. Robust Graph Con-
volutional Networks Against Adversarial Attacks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining (Anchorage, AK, USA) (KDD ’19). Associ-
ation for Computing Machinery, New York, NY, USA, 1399–1407.
doi:10.1145/3292500.3330851

[27] J. Zhu, J. Jin, D. Loveland, M. T. Schaub, and D. Koutra. 2022. How does
Heterophily Impact the Robustness of Graph Neural Networks? Theo-
retical Connections and Practical Implications. In Proceedings of the

28th ACM SIGKDDConference on Knowledge Discovery and DataMining
(Washington DC, USA) (KDD ’22). Association for Computing Machin-
ery, New York, NY, USA, 2637–2647. doi:10.1145/3534678.3539418

[28] F. Zola, L. Segurola-Gil, J. L. Bruse, M. Galar, and R. Orduna-Urrutia.
2022. Network Traffic Analysis through Node Behaviour Classification:
A Graph-Based Approach with Temporal Dissection and Data-Level
Preprocessing. Computers & Security 115 (2022), 102632. doi:10.1016/j.
cose.2022.102632

[29] D. Zügner, A. Akbarnejad, and S. Günnemann. 2018. Adversarial
Attacks on Neural Networks for Graph Data. Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (2018). https://api.semanticscholar.org/CorpusID:29169801

[30] D. Zügner and S. Günnemann. 2019. Adversarial Attacks on Graph
Neural Networks via Meta Learning. CoRR abs/1902.08412 (2019).
arXiv:1902.08412 http://arxiv.org/abs/1902.08412

175

https://doi.org/10.1145/3492321.3519557
https://doi.org/10.1145/3292500.3330851
https://doi.org/10.1145/3534678.3539418
https://doi.org/10.1016/j.cose.2022.102632
https://doi.org/10.1016/j.cose.2022.102632
https://api.semanticscholar.org/CorpusID:29169801
https://arxiv.org/abs/1902.08412
http://arxiv.org/abs/1902.08412

	Abstract
	1 Introduction
	2 Related Work
	3 -GNN: Learned-Weighted Ensemble of GNNs and MLP
	3.1 Problem Formulation
	3.2 Learned-Weighted Ensembling

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Results
	4.3 Complexity Analysis

	5 Conclusion
	Acknowledgments
	References

