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Abstract
Large Language Model (LLM) workloads consist of distinct prefill
and decode phases, each with unique compute and memory require-
ments that should be considered when routing input queries across
cluster instances. However, existing load-balancing algorithms treat
these workloads as monolithic jobs, ignoring the differences be-
tween the two phases. This oversight leads to suboptimal query
distribution and increased response latency. In our work, we first
characterize the factors affecting response latency during LLM in-
ference. We show that balancing inference requests across available
LLM instances can improve end-to-end latency more than simply
optimizing the instance-level scheduler. Motivated by these find-
ings, we propose a heuristic-guided, reinforcement learning-based
router for data-driven, workload-aware scheduling. Our router dis-
tributes queries across LLM instances by using a trainable response-
length predictor and a novel formulation for estimating the impact
of mixing different workloads, achieving over 11% lower end-to-
end latency than existing methods on mixed public datasets. Our
framework represents a first step toward a holistic optimization
framework and serves as a benchmark for deriving optimal load
balancing strategies tailored to different reward functions and re-
quirements. Beyond latency, we can extend the proposed frame-
work to optimize for various performance criteria ensuring that
the system meets diverse operational objectives.

ACM Reference Format:
Kunal Jain, Anjaly Parayil, Ankur Mallick, Esha Choukse, Xiaoting Qin,
Jue Zhang, Íñigo Goiri, Rujia Wang, Chetan Bansal, Victor Rühle, Anoop
Kulkarni, Steve Kofsky, Saravan Rajmohan, Microsoft . 2025. Performance
Aware LLM Load Balancer for Mixed Workloads. In The 5th Workshop on
Machine Learning and Systems (EuroMLSys ’25), March 30-April 3, 2025,
Rotterdam, Netherlands. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3721146.3721947

1 Introduction
The emergence of large language models (LLMs) and their gen-
erative ability has led to an increase in their usage in conversa-
tional engines, search engines, and code assistants Adiwardana
et al. [1], Chen et al. [5], Roller et al. [35]. The widespread usage
of these large models, coupled with the significant GPU compute
required for inference, has made LLM inference the dominant GPU
workload. Optimizing LLM inference is thus critical for improving
user experience, lowering the pressure on GPU resources, and re-
ducing the environmental impact of running LLM workloads, and
so there has been a flurry of recent work looking at various aspects
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Figure 1: Key Results: (a) The red curve indicates trend in the
execution time when a LLM instance serves a single request,
while the blue curve shows spikes in the total execution time
of a request due to the addition of additional requests to
that instance at fixed intervals. (b) Our RL-based approaches
improve upon Round-robin (RR) routing in terms of overall
latency withWorkload Guided RL (WG RL) reducing average
end-to-end latency by 19.18 seconds. (c) The average Time-
To-First-Token is the lowest for the proposed approach.

of LLM inference optimization Li et al. [21], Lin et al. [22], Spector
and Re [36], Zhang et al. [44].

LLM inference is usually performed on the cloud by model in-
stances hosted by commercial cloud providers [12, 26] or dedicated
LLM inference platforms [14, 28] that serve inference requests from
a variety of tenants. Owing to the widespread use of LLMs in chat-
bots, document summarization, and content creation, the requests
vary in terms of their input and output characteristics. Each LLM in-
stance that serves the inference request contains a scheduler, which
is a batching system responsible for creating a batch of requests
by retrieving requests from a queue and scheduling the execution
engine. There exist multiple approaches in the literature that try
to optimize the batching of these requests at a single LLM instance
[2, 30, 43, 45] with various goals like reducing queueing delay of
requests, maximizing the utilization of the serving infrastructure,
etc. For similar reasons, works like [10, 27] have looked at routing
requests acrossmultiple LLMs (route easy requests to a small model
and hard requests to a big model). However neither of these lines
of work have considered routing requests across multiple instances
of a single LLM.

This is a significant gap since all cloud providers host multiple
instances of each model and need to design policies for assigning
requests to instances such that they can be served with low latency.
The wide variety in the size of input queries and LLM responses
across scenarios implies that sub-optimal request assignment can
significantly increase inference latency. Figure 1a shows spikes in
execution time of a request when new requests are added while the
LLM instance is still processing an initial request. The execution
time of a request during each iteration is significantly impacted
by the addition of new requests. We conducted an empirical study
(see Figure 2) analyzing the disparity between optimal and random
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assignment of 8 requests arriving at a rate of 1 per second, with
varying input and output lengths assigned to two LLM instances
using set partitioning. Through exhaustive search of all possible
combinations, we found that the best achievable latency was 27.03
seconds, the worst was 32.34 seconds, and a random assignment
yielded a latency of 29.81 seconds. On average, a random assignment
yields 10% higher end-to-end latency than the optimal assignment.

Given our optimization preferences, our objective is to iden-
tify the optimal set of requests to co-serve in each model instance,
achieving the best performance metrics—in terms of both combina-
tion and distribution of requests—which will serve as a benchmark
for future load-balancing strategies.

We begin by examining the interplay between routing strate-
gies and instance-level scheduling. Poor request assignment at the
instance level adversely affects latency; therefore, improved rout-
ing strategies that consider both incoming and ongoing request
characteristics are needed. Optimization decisions for routing (load
balancing) are critical and must be treated differently from those
for instance-level scheduling to fully realize their benefits.

Our analysis starts with the prompt and decode phases of infer-
ence requests, where we estimate the execution time for a request
given its prompt and decode lengths. We then study the factors
influencing end-to-end latency in an LLM instance, including co-
served requests and variations in prompt and decode distributions.
By classifying requests based on these characteristics, we model
the latency impact of their mixing and propose a latency impact
estimator supported by a lightweight decode length predictor.

Finally, we introduce an intelligent router tailored to a specific
combination of instance-level scheduler, LLM, and hardware. By
strategically delaying routing and choosing the optimal model in-
stance based on both current load and incoming requests, we reduce
queuing at model instances, achieving an average latency improve-
ment of 11.43% over 2,000 requests across four LLM instances. We
also provide a preliminary evaluation of the framework’s scalabil-
ity, adaptability to different LLM-hardware combinations, and its
performance on a real production trace.

Contributions: 1) We show that poor request assignment at
the instance-level cannot improve end-to-end latency beyond a
point and highlight the impact of concurrently serving diverse in-
ference requests. 2) We introduce a novel formulation to model
this impact. 3) We develop a lightweight decode length predictor
that performs well across various prompt and decode characteris-
tics. 4) We propose a heuristic-guided, workload-aware RL router
that leverages prior knowledge of workload mixing to optimize
the assignment of requests to LLM instances, thereby improving
overall performance. Our intelligent router optimizes latency for
a given hardware, model, and instance-level scheduler, setting a
benchmark for future load balancers by finding the optimal distri-
bution of requests across the instances. The framework also offers
the flexibility to integrate additional optimizations, such as prefill
chunking or prefix caching, to further enhance performance.

2 Preliminaries
Large Language Models (LLMs) go through prompt/ prefill and
decode phases while serving a request

Scheduler block at LLM instance. Each LLM instance that serves
the inference request contains a scheduler, which is a batching
system responsible for creating a batch of requests by retrieving
requests from a queue and scheduling the execution engine. The
scheduler controls how many and which requests are processed in
each iteration and may use techniques like iteration-level sched-
uling introduced in Yu et al. [43] to reduce queueing delay. The
highlighted blocks in Figure 3 show the scheduler at each LLM in-
stance. Often, the First-Come-First-Served policy is used for sched-
uling requests as online requests are latency-sensitive. We give a
comprehensive review of the scheduling literature along with other
relevant works in Appendix A.
Problem Setup.We consider serving a stream of requests using
multiple homogeneous LLM instances, each with a scheduler Yu
et al. [43] to iteratively batch requests using a First-Come-First-
Served policy. Requests vary in tasks like summarization, QnA,
and translation, each with different prompt and decode characteris-
tics. Requests queue centrally and are routed one at a time to an
LLM instance with available capacity. Due to memory constraints,
a request may be preempted mid-process if its response exceeds
expected size. Our goal is to minimize end-to-end latency by assign-
ing requests to LLM instances, assuming the request arrival rate
maintains system equilibrium and given any optimization strategies
present at the model-level scheduler.

3 Observation
Dataset. In general, LLM queries come from different tasks and
differ in terms of their prompt and decode distribution. We simulate
the prompt and decode distribution using data from five different
tasks: sentiment analysis, entity recognition, in-context QnA, gen-
eral QnA, and translation (prompt details in Appendix C.5). Input
output distribution of the dataset and performance on our methods
is summarized in the Appendix C.1 We see a clear distinction in the
average length of prompt and decode tokens, and in the percentage
of requests with heavy decode, across tasks.
Prompt-Decode characteristics of requests and their execu-
tion time.We start by characterizing the processing time of a re-
quest in terms of their prompt and decode token count. Figures 4a
and 4b show that batch execution time increases linearly with the
number of prompt tokens due to it’s compute bound nature, and the
growth is much slower during the decode phase. Thus, we estimate
the processing time for a request with 𝑝 prompt and𝑑 decode tokens
as𝑝×(time per prompt token)+𝑑×(average decode batch time).
Similarly, the earliest time anymodel instance will become available
is (iterations left) × (average batch time). It is to be noted
that Figures 4a and 4b correspond to the profiles for Llama-2-7b
models on V100. A similar profiling approach can be followed for
the processing time of a different LLM and hardware combination.
Consistency Across Hardware and Model Combinations: For
consistency across different LLM and hardware combinations, we
classify prompt and decode phases as either heavy or light based on
their processing time for that LLM and hardware. Requests that take
0.5 seconds or more to complete their prompt phases are defined
as heavy prompts, while requests that take 5 seconds or more in
the decode phase are defined as heavy decodes. These values are
hyperparameters that can be tuned to the provider’s needs. It should
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(a) Experimental Set Up

E2E Latency # of interference spikes
27.03 18
28.92 23
29.47 22
30.27 30
31.13 34
32.34 40

(b) E2E latency and spikes

Figure 2: (a) We assigned 8 requests, arriving at a rate of 1 per second, with input and output lengths varying from 10 to 100,
to two LLM instances using set partitioning. Through exhaustive search of all possible combinations, we found that the best
achievable latency was 27.03 seconds, the worst was 32.34 seconds, and random assignment resulted in an expected latency of
29.81 seconds. The ideal case is approximately 10% better than the average. (b) The figure shows the number of spikes and
their corresponding E2E latency during the simulation. The ideal scenario has a maximum of seven spikes, but we observe a
significantly higher number of spikes, suggesting request preemption

Figure 3: Our intelligent router optimizes request routing for end-to-end latency by using the output length predictor and
workload impact estimator to route incoming requests to the appropriate model instance based on request characteristics and
instance state. In contrast, current approaches focus on instance-level scheduling, as shown by highlighted regions around
each model instance. Our router achieves optimal improvements regardless of the LLM instance’s optimization strategy.
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Figure 4: Effects of prompt and decode tokens on batch execu-
tion time. (a) Execution time of batch with a request in prefill
phase grows fast and linearly with the number of prefill to-
kens. (b) Execution time of batch with only decode tokens is
affected to a much lesser degree with the number of tokens.
(c) Increase in execution time on mixing requests with the
arrival pattern of Figure 1a

be noted that input prompts with 1024 tokens may be heavy for a
V100, but they may not be classified as heavy for an H100 due to the
latter’s better processing capability. We then divide all incoming

requests into four categories: light prompt-light decode (LL), light
prompt-heavy decode (LH), heavy prompt-light decode (HL), and
heavy prompt-heavy decode (HH). Next, we quantify the factors
affecting the latency and end-to-end performance of LLM inference.

Effect of co-serving requests in the prompt and decode
phase on a single LLM instance. To analyze the effect of process-
ing requests in their prompt and decode phase on a single machine,
we served a single request on a LLM instance and added requests
at fixed intervals while the first request is still in its decode phase.
As shown in Figure 1a, the execution time of the first request ex-
perienced spikes when new requests were added while the LLM
instance was still processing an initial request. The orange curve
in Figure 4c shows the ideal latency for the first request, which is
17 seconds for a request with 𝑝 = 1000 and 𝑑 = 1000. However,
the end-to-end latency increases to 31 seconds due to the arrival of
new requests of 𝑝 = 500 and 𝑑 = 500 at every 50th iteration. The
decode phase of the first request experienced increase in execution
time due to the latency spikes caused by the prompt phase of each
of the incoming requests [13].
Effect of serving requests with distinct prompt and decode
characteristics on a single LLM instance. Recall that: (i) the
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latency of the incoming request during the prompt phase increases
rapidly and linearly with an increase in the number of prompt
tokens, and (ii) the decode phase has a much lower impact, and
the mean iteration time varies slowly with an increase in total
tokens. As we can see from Figure 4 (Llama-2-7b models profiled on
V100 GPUs), the gradient for our configuration can be calculated
as 3.2 × 10−4 and 3.3 × 10−5. Thus mixing requests with different
prompt and decode characteristics in a batch at a model instance can
impact overall latency due to mismatch and interference between
the prompt and decode phase of the requests. We see a roughly
linear increase in batch execution with an increase in token count.
The same approach can be followed for other model and hardware
combinations.
Factors affecting E2E Latency. In real-world scenarios, multiple
LLM instances serve requests. We analyze how routing strategies
and model-level scheduling algorithms affect end-to-end latency.
Using two LLM instances and 3000 requests, we examine four arrival
patterns: 1) random LH and HL mix; 2) random mix of all four
classes; 3) LH requests first, then HL; and 4) HL first, then LH. We
compare various batching and routing combinations (see Appendix)
and find that their interplay determines overall latency.
For example, the bin-packing scheduler finishes Scenario I six sec-
onds faster with round-robin routing than with decode balancer
routing—but the same setup is four seconds slower in Scenario
II. Suboptimal strategies, such as dedicating servers for specific
request sizes, can severely harm performance. Notably, in Scenar-
ios III and IV, all batching algorithms yield identical latency, with
routing being the decisive factor. This underscores that scheduling
effectiveness depends on the router’s choices.
Insight: Request characteristics and arrival patterns must guide
routing decisions. Since scheduling algorithms can only perform
as well as the router’s assignment, the next section proposes opti-
mal routing strategies tailored to specific model-level schedulers,
hardware, and model combinations, detailing the router’s design
and its key components.

4 Intelligent Router: Design
Figure 3 shows the overall design of the intelligent router. Based on
the insights from section 3, an intelligent router should: a) classify
requests based on prompt-decode characteristics and be able to
estimate decode length, b) estimate the adverse effect of mixing
diverse requests at a single model instance on end-to-end latency,
c) leverage prior knowledge of these adverse effects for decision
making, and d) possess lightweight modules for efficient processing.
To achieve this, we develop an output length predictor andworkload
impact estimator for intelligent routing. Additionally, we propose a
reinforcement learning framework to utilize accumulated context
and prior knowledge, improving end-to-end latency.

4.1 Output length predictor
Similar to [18], we generate responses for each request from our
dataset (see Section Observation) and bucket them based on the
number of output tokens. These buckets serve as labels to fine-tune
a DistillBERT model for predicting output token ranges for new
requests. Instead of equal-sized buckets, we define ranges based on
estimated completion times—e.g., 0–0.5 seconds, 0.5–2 seconds, 2–4

seconds—translating to roughly 0–250, 250–1000, and 1000–4000
tokens given our 500 tokens/sec throughput. This choice better
distributes requests and aligns ranges with expected times.

We found that Jin et al.’s approach does not generalize to our
dataset, with accuracy only 5.5% for unequal buckets and 9.3% for
equal 250-token buckets. By appending the task type as a hint
to the prompt—a reflection of our observation that input/output
characteristics depend on task—we boost accuracy to 79.15% for
unequal buckets and 68.23% for equal buckets, while task type
prediction itself reaches 93.79

4.2 Workload impact estimator
Next, we use the profiling approach from Section 4 to obtain the
analytic expression for the processing times of the prompt and
decode phase. Let there be 𝑛 requests within model instance 𝑚,
and 𝑝𝑚

𝑗
and 𝑑𝑚

𝑗
indicate the number of prompt and decode tokens

processed by the 𝑗-th existing request at model𝑚. As the impact
on the prompt phase is directly proportional to the number of
prompt tokens in the request and the total number of tokens already
running in the decode phase, we can model the impact on the
prompt phase (time to process 𝑝𝑖 ,𝑇𝑚

𝑝𝑖
) of an incoming request with

𝑝𝑖 tokens when added to the model instance with n requests, and
corresponding penalty as:

𝑇𝑚
𝑝𝑖

= grad1 ∗
(
(𝑝2

𝑖
+ ∑𝑛

𝑗=1

(
𝑝𝑚
𝑗
+ 𝑑𝑚

𝑗

))
𝑟𝑚𝑝𝑖 =

{
1 if 𝑇𝑚

𝑝𝑖
≤ 𝜖

1 − 𝑇𝑚
𝑝𝑖

𝜖 otherwise
(1)

Here, we introduce a penalty if the latency impact exceeds 𝜖 . Simi-
larly, the impact on existing requests beyond the prompt phase is
directly proportional to the total number of requests in the model.
We can model the penalty due to the impact of an incoming request
with 𝑝𝑖 prompt tokens and 𝑑𝑖 decode tokens on the decode phase
of already existing 𝑛 requests as:

𝑟𝑚
𝑑

= −grad2 ∗
𝑛∑︁
𝑗=1

(
𝑝𝑚𝑗 + 𝑑𝑚𝑗

)
+ 𝑝𝑖 + 𝑑𝑖 (2)

With our selection of grad1 as 3.2 × 10−4 and grad2 as 3.3 × 10−5,
we expect the values 𝑟𝑚

𝑑
and 𝑇𝑚

𝑝𝑖
to be in the ranges of [−1, 1] and

[−1, 0] respectively when there are no requests waiting at the model
instance. We combine Equation 1 and Equation 2 to get the final
penalty of mixing requests: 𝑟mixing (𝑠𝑡 , 𝑠𝑡+1) = 𝛼𝑟𝑚𝑝𝑖 + (1 − 𝛼)𝑟𝑚

𝑑
where𝑚 is the action taken for the state transition 𝑠𝑡 → 𝑠𝑡+1. Here,
parameter 𝛼 ∈ (0, 1) balance priority over the prompt and decode
phases.

4.3 RL based router
We formulate the problem of routing incoming requests to the𝑚
model instances as discrete-time Markov Decision Process (MDP)
and propose a reinforcement learning-based solution [39]. We as-
sume an arrival rate of 𝜆 for the requests and the ideal estimated
time to complete request 𝑖 as 𝑇𝑖 . Let 𝑜 𝑗𝑡 denote the total number of
output tokens produced until time 𝑡 by request 𝑗 , and 𝑑 𝑗𝑡 denote
the estimated decode tokens for the 𝑗-th request. Therefore, we
denote the fraction of request 𝑗 completed at time 𝑡 by 𝑓𝑗𝑡 :=

𝑜 𝑗𝑡

𝑑 𝑗𝑡

.
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Batching Algorithm Routing Algorithm Total End to End Latency (seconds)

(LH, HL random) (Random) (LH, then HL) (HL, then LH)

Bin Packing [18]
Dedicated Small-Large 704.5 644.75 566.25 588.15

Round Robin 581.5 559.3 424.8 440.68
Decode Balancer 595.82 555.4 424.82 440.81

Least Work Left
Dedicated Small-Large 704.5 641.81 566.25 588.15

Round Robin 585.14 554.00 424.64 440.82
Decode Balancer 596.95 559.97 424.66 440.81

FCFS [43]
Dedicated Small-Large 704.5 648.66 566.25 588.15

Round Robin 607.45 572.16 424.80 440.82
Decode Balancer 605.65 573.17 424.82 440.81

Table 1: Performance of batching and routing algorithm combinations. We simulate arrival of requests with distinct character-
istics using the request classification discussed in section 3 and test the combined affect of routing and batching strategies.
Good routing algorithm on an average shows greater end-to-end latency improvement compared to the batching algorithm on
all the scenarios with distinct characteristics and arrival sequence.

We assume state transition at every Δ𝑡 , where Δ𝑡 is the average
time to generate a decode token.

State Space: At time 𝑡 , the state of the system, which comprises
𝑚 model instances and requests waiting in the queue, can be cap-
tured by the following: 1) The number of requests in the queue
at time 𝑡 , denoted by𝑤𝑞𝑡 ; 2) The exact number of prompt tokens,
denoted by 𝑝𝑡 ∈ R, and the estimated bucket for the decode tokens,
denoted by 𝑑𝑡 ∈ {0, . . . , 𝑛𝑑 }, corresponding to the next request in
the queue. Here, the estimated bucket varies from zero to 𝑛𝑑 ; 3)
Matrices, P𝑡 ∈ R𝑚𝑛𝑝 and D𝑡 ∈ R𝑚𝑛𝑑 , capturing the prompt and
decode distribution of requests at the model instances. We represent
the prompt (decode) distribution by𝑛𝑝 (𝑛𝑑 ) buckets. (P𝑡 )𝑖, 𝑗 ((D𝑡 )𝑖, 𝑗 )
denotes the number of requests in prompt (decode) phase at the 𝑖-th
model instance that are present in the 𝑗-th bucket i.e. have 𝑗 prompt
(decode) tokens. We represent the prompt and decode distribution
across the model instances as a matrix, which maintains the finite
dimensionality of the state space. 4) The capacity available at the
model instances at time t is denoted by C𝑡 ∈ R𝑚 , as a function
𝑔(batch size, P𝑡 ,D𝑡 ); and 5) The estimated completion time for
the earliest request in model 𝑗 , denoted by 𝑇𝑐𝑡 .

Action Space: At any given point in time, the agent must decide
whether to schedule incoming request 𝑖 to any of the 𝑚 model
instances or choose to take no action. Therefore, 𝑎 ∈ {0, . . . ,𝑚}.
Here, index𝑚 refers to no action being taken by the router.

Reward Design: Based on the insights from section 3, we in-
clude the following elements in the reward formulation: a) a nega-
tive penalty for requests in the queue, decreasing as requests are
processed, to account for the autoregressive nature of requests, b)
a positive reward for each completed request, and c) a workload
impact estimator-based penalty, which encodes the adverse effect of
routing specific requests to a model instance with existing requests,
and prevents requests from being queued at each model instance
due to a lack of memory. Note that adding the workload impact
estimator-based penalty directly to the reward function might intro-
duce bias. Therefore, we propose to augment the prior knowledge
using a heuristic-guided formulation [6], and the reward at time t

is given by:

𝑟𝑡 = −
∑︁
𝑗∈J

(
1
𝑇𝑗

(
1 − 𝑓𝑗𝑡

))
+

𝑚∑︁
𝑗=1

∑︁
𝑖

𝑟𝑤 ×w𝑚𝑖𝑡

−(𝛾 − 𝛾𝑘 )ℎ(s𝑡 , s𝑡+1) (3)

where

ℎ(𝑠𝑡 , 𝑠𝑡+1) = 𝑟mixing (s𝑡 , s𝑡+1) − max
𝑙=1,...,𝑚

(𝑟mixing (s𝑡 , s𝑙𝑡+1)) (4)

Here, J includes the set of scheduled and unscheduled requests,
and w𝑚𝑖𝑡 ∈ {0, 1} indicates whether the 𝑖𝑡ℎ at the𝑚𝑡ℎ model com-
pleted at time 𝑡 . 𝑟𝑤 ∈ Z+ is the positive reward for completing a
request. The function ℎ : S × S → R represents the difference in
penalty due to assigning the incoming request to a model other
than the one for which the impact is minimum (a function of equa-
tions Equation 1 and Equation 2). The term "guidance discount" is
given by 𝛾𝑘 = 𝜆𝑘𝛾 , where the subscript 𝑘 denotes the 𝑘-th episode.
Here, 𝜆𝑘 ∈ [0, 1] is the mixing coefficient and settles to zero with
an increase in episodes [6]. The discount factor in the MDP is
set to 𝛾𝑒 during training. The function ℎ() returns zero when the
request is assigned to the model with the least workload mixing
impact. Intuitively, the formulation introduces horizon-based reg-
ularization, and its strength diminishes as the mixing coefficient
increases, which modifies the original MDP, M = (S,A, 𝑃, 𝑟, 𝛾),
to M̃ = (S,A, 𝑃, 𝑟, 𝛾). Over the course of training, the agent inter-
acts with the environment, and the effects of the heuristic in the
MDP decrease, and the agent eventually optimizes for the original
MDP. Guarantees on the boundedness of the reshaped MDP’s value
function directly translate from [6].

5 Experiments
We conduct experiments to evaluate the performance improvement
of the intelligent router comapred to different heuristics on the
dataset presented in Section 3.

Evaluation metrics: For all the experiments, we report the end-
to-end latency, Time-To-First-Token (TTFT), which is the time taken
for the user to see the initial response, and Time-Between-Tokens
(TBT), which is the average token streaming latency [30]. Addition-
ally, we report the throughput achieved by different approaches.
We included three variants of the RL formulation, including the
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Figure 5: Experimental Results. We simulate 2000 requests
with distinct characteristics arriving at 20 per second, aver-
aging results over 20 episodes. Initially, Round-Robin yields
better average TBT, but its performance degrades over time
as the request pool diversifies. In contrast, Workload Guided
RL minimizes variance in both waiting requests and TBT,
keeping the waiting queue shorter than alternative methods.

baseline RL formulation with a reward function consisting of only
the first and second terms from Equation 3, workload-augmented
RL which simply adds the penalty from 𝑟mixing to the baseline RL
(workload knowledge augmented), and workload-guided RL that
uses the heuristic-guided formulation 3.

Setup We route requests between four instances of LLama-2-7b-
hf model [41] on a cluster of four V100 GPUs using vLLM [20] with
its default First-Come-First-Served (FCFS) scheduler for iteration-
level scheduling. We assume an average request arrival rate of
𝜆 = 20/𝑠 , with requests uniformly sampled at random from the
dataset in Section 3. The routing of requests to model instances is
asynchronous, and we take actions every 0.02 seconds, which is
the minimum decode batch execution time.

For baseline RL, we set 𝛾 − 𝛾𝑒 = 0 in the reward function
from Equation 3. For workload-aware RL, we directly augment
the penalty for mixing requests to the reward function. Therefore,
we set 𝛾 − 𝛾𝑒 = 1. For all experiments, we give equal weight to the
impact on the prompt and decode phase. Therefore, 𝛼 for equations
Equation 1 and Equation 2 is set to 0.5. For workload-guided RL, we
use the guidance mechanism from Equation 3. We set 𝜆𝑘 = 𝑒−𝛽𝑑𝑘

(exponential decay over each episode) with 𝛽𝑑 = 0.5, and the guided
discount factor for training 𝛾 as 𝛾 = (1−𝑒−𝛽𝑑𝑘 )𝛾 . Additional details
on the model training are added to Table C.1.

5.1 Performance evaluation of Intelligent router
Here we compare the performance improvements with respect to
various heuristics.

End-to-end latency: We evaluate RL based approaches over 20
episodes, each comprising 2,000 requests with distinct character-
istics. As shown in Figure 1b, our methods outperformed Round-
Robin in terms of end-to-end latency for servicing all requests.
Baseline RL surpassed Round Robin by an average of 7.53 seconds
(4.35%). Incorporating the workload-aware penalty into the reward
function enhanced this advantage to 13.50 seconds (7.79%), and uti-
lizing the penalty as heuristic guidance for the RL agent improved
the advantage to 19.18 seconds (11.43%). This is intuitive as heuris-
tics should only be employed as a warm start and should be reduced
as the agent collects more information about the environment.

Classical heuristics such as Join Shortest Queue, Maximum Ca-
pacity Usage, and Min-Min Algorithm [4] only marginally out-
performed Round Robin by 0.46%, 2.60%, and 1.50%, respectively,
in terms of end-to-end latency. These results are intuitive as clas-
sical heuristics do not translate well for LLM workloads due to
their unique nature. Due to this, we only provide further results in
comparison to Round Robin. We provide further details on these
algorithms in the appendix subsection C.3.
Improvements in TTFT and TBT: RL-based approaches outper-
formed the Round-robin router in terms of average TTFT (Figure
1c), with significant improvement as the number of accumulated
requests increased over time. Baseline RL halved the TTFT for late-
arriving requests by finding a better assignment than Round-robin.
Workload-aware penalty further enhanced these decisions, but not
optimally, as it diluted the urgency to complete requests promptly
and introduced constant bias. Workload-guided RL performed the
best by selecting more optimal model instances and mitigating
spikes in TBT of existing requests (Figure 5a). Although Round-
robin performed better initially in terms of average TBT, the value
increased over time as more requests with different characteristics
accumulated. Workload awareness effectively reduced the number
of outliers and the variance of the distribution (Figure 5b).

Queuing at Router and Model Instance: Figure 5c illustrates
the average length of the waiting queue at the model instances.
While Baseline RL exhibited a shorter average waiting time of 0.59
seconds at the router, the requests got preempted at the model
instances and accumulated substantial delays. This approach was
suboptimal since postponing the routing decision could have re-
sulted in a better model instance getting assigned and resulted in
faster processing of the request. In contrast, Workload-aware RL,
with an average router wait time of 4.41 seconds, addressed this
issue by incorporating a penalty based on the workload. Workload
Guided RL further refined this strategy by utilizing the penalty as
a guidance mechanism, resulting in an average router wait time of
2.05 seconds and improved overall performance.

6 Limitations and Conclusion
We introduce a heuristic-guided RL router to efficiently schedule
requests across homogeneous LLM instances. By modeling the im-
pact of concurrently serving diverse workloads, our approach lever-
ages prior knowledge of workload mixing to improve end-to-end
latency. Our formulation generalizes to enhance key metrics like
Time-To-First-Token (TTFT) and Time-Between-Two-Tokens (TBT),
with the flexibility to incorporate additional requirements such as
serving throughput. Experimental evaluations show our method
outperforms current baselines across various models, hardware
setups, and datasets. While introducing some overhead compared
to pure heuristics, this framework paves the way for identifying
optimal load balancing strategies for any given model-hardware
combination and instance-level scheduler. We envision it setting
a new benchmark for future inference scheduling research. and
lays the groundwork for a versatile and comprehensive scheduling
framework that can be tuned to a wide range of models, hardware
configurations, and performance objectives.
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A Related Work
A.1 LLM Serving Systems
Recent advancements in inference serving systems for LLMs have
focused on optimizing throughput, latency, and resource manage-
ment. ORCA Yu et al. [43], Sarathi Agrawal et al. [3], FlashAttention
Dao et al. [7], and vAttention Prabhu et al. [32] are examples of sys-
tems that have achieved significant improvements in performance
through techniques such as iteration-level scheduling, innovative
batching, and IO-aware algorithms.

A.2 LLM Serving Algorithms
This space has also seen several algorithmic innovations. QLM
(Patke et al. [31]) utilizes Bayesian statistics and stochastic pro-
gramming to manage non-deterministic execution times inherent
in LLMs. Similarly, Qiu et al. [33] advocates for speculative shortest-
job-first scheduling, and Wu et al. [42] employs preemptive sched-
uling to improve performance. DistServe and Splitwise (Patel et al.
[30], Zhong et al. [45]) optimize LLM serving performance by sepa-
rating prefill and decoding computation for throughput enhance-
ment while maintaining low latency. In addressing system load
and request patterns, Jha et al. [16] and Mendoza et al. [25] utilize
deep reinforcement learning to dynamically adjust service quality,
increasing hardware utilization for cost-efficient serving. Addition-
ally, Liu et al. [23] optimize Quality-of-Experience (QoE) for LLM
serving systems, focusing on user-centric metrics to enhance in-
dividual experiences. Patke et al. [31], Sun et al. [38] proposes a
multi-model queue management framework for LLM serving and
orchestrate the actions such as model swapping, request eviction,
GPU-CPU state swapping, load balancing, and warm model start.
While these works optimize request scheduling at the instance level,
they ignore the diversity in the prompt and decode characteristics
across requests.

A.3 Hybrid LLM Inference
Recent works [9, 10, 19, 27] have introduced a hybrid inference
paradigm which uses two different models instead of a single model
for inference. The key idea is to save inference cost without compro-
mising on response quality by routing easy queries to the smaller
and less capable model (e.g. Mixtral [17]) while the difficult queries
are routed to the larger and more capable model (e.g. GPT-4 [29]).
The routing is typically achieved by training a query-difficulty clas-
sifier and is thus different from our reinforcement learning based
router which seeks to find the optimal assignment of requests across
different instances of the same model.

A.4 Reinforcement Learning for routing jobs
Reinforcement Learning (RL) has been a natural choice for routing
jobs in multi-server queues owing to the challenges in deriving
exact policies. While previous works [15, 37] have looked at general
jobs, in this work we leverage the specific characteristics of LLM
requests and insights from our workload-study to design novel
workload aware RL approaches for routing inference requests across
LLM instances.

Routing Algorithm Prefill Chunking Avg. E2E Latency (s) Improvement
Round Robin No 248.41 -
Baseline RL No 240.58 3.15%

Workload Aware RL No 231.66 6.74%
Workload Guided RL No 221.80 10.71%

Round Robin Yes 247.30 0.45%
Baseline RL Yes 240.68 3.11%

Workload Aware RL Yes 231.12 6.96%
Workload Guided RL Yes 220.93 11.06%

Table 2: Intelligent router was able to generalize the approach
across different model and hardware combinations, outper-
forms heuristics, and shows additional improvements even
with chunked prefills.
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Figure 6: Model and hardware generalizability: Experiments
on A100s with Llama 3.1 8B shows that intelligent router
maintains prompt and generation throughput similar to
Round Robin. Intelligent router still outperform Round
Robin in the presence of optimizations such as chunked pre-
fills.

B Additional Results
B.1 Different LLM and Hardware combination
We conducted experiments on different LLM and hardware com-
binations, specifically testing on A100 with Llama-3.1-8B. Due to
better processing capabilities, we increased the arrival rate to 80
RPS, benchmarked the gradients again for the hardware/model
combination, and retrained our agent with the same remaining
hyperparameters. With more requests coming in, the router had
many more decisions to make. Even then, our strategies were able
to outperform Round Robin by similar margins (10.81%), as shown
by the first four rows of Table 2. We observe in Figure 6a that
our methods maintain prompt and generation throughput similar
to Round Robin. Round Robin exhibits similar throughput over
a longer period of time, indicating that it generates more tokens
to service the same number of requests, highlighting the impact
of request preemption. Additional experiments were conducted to
validate the scalability of the proposed approach, and the results are
presented in subsection C.11. The intelligent router outperformed
Round Robin by 11.62% when evaluated on a setting with eight
LLM instances.

B.2 Performance in the presence of SOTA
Optimizations

Next, we will evaluate the performance of the intelligent router in
the presence of chunked prefill tokens [3]. The aim is to assess the
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performance improvements achieved by the intelligent router in
the context of optimizations at the instance-level scheduler.

For Round-Robin, chunked prefill tokens only improves perfor-
mance by 0.45%, which could be due to experimental noise. Chunk-
ing is not primarily intended to improve E2E latency but rather to
enhance user experience by reducing TBT/decode throughput at
the expense of TTFT. However, we observe that our method is able
to adapt well to this new setting and maintain its lead over Round
Robin. Figure 6b shows that the intelligent router still improves
TTFT with chunking, despite the fact that chunking is supposed to
harm TTFT. Figure 6c shows that TBT has much less variance now,
and the average TBT across methods is the same. The performance
gains are intuitive, as the intelligent router prevents preemptions of
requests and selects the best suitable LLM instance for each request
based on the request characteristics and other requests currently
being served by each instance. Additional experiments that validate
performance improvements on a different dataset, which is the
real production trace from Cloud provider X, have been added to
subsection C.12.

C Appendix / supplemental material
C.1 Performance on Dataset
C.2 Batching and Routing Algorithms
All the batching algorithms are non-preemptive in nature, meaning
that once the processing of a request has started, it is prioritized
over requests which have not. Next, we discuss different batching
and routing algorithms defined in section 3.

C.2.1 Batching: Bin Packing Algorithm. When a new request’s
processing can be started, we select the largest request that can fit
into the memory available. Ties are broken by FCFS.

C.2.2 Batching: Least Work Left. Among the requests available, we
select the request with the smallest number of decode tokens.

C.2.3 Batching: FCFS. The request which arrives first is processed
first.

C.2.4 Routing: Dedicated Small-Large. For the two LLM model
instances, we dedicate one instance for servicing only the heavy-
decode requests while the other model instance services only the
light-decode requests.

C.2.5 Routing: Round Robin. Each of the two model is user alter-
natively by the router to send requests to.

C.2.6 Routing: Decode Balancer. We assume that the total num-
ber of output tokens is known beforehand for the request and we
balance the sum of decode tokens on both the model instances.

C.3 Additional Baselines
We implemented three baselines other than Round Robin and the
Light-weight Heuristic:

C.3.1 Join Shortest Queue. Each arriving request is routed to the
model with the least number of prompt and decode tokens yet to
be processed.

C.3.2 Maximum Capacity Usage. Request at the front of the queue
is routed to the model with the maximum capacity available, given
that it can process this particular request, at intervals of one second.

C.3.3 Min-Min Algorithm. We implemented the classical Min-min
algorithm, using the number of prompt tokens and the upper bund
of the predicted decode token buckets to calculate the time for
finishing each job. Since we have homogenous model instances,
this strategy becomes similar to shortest job first.

C.4 Overhead of the Router
For each decision, the router has to perform two additional steps
in our approach: (i) inference from DistillBERT for output length
bucket and (ii) inference from the neural network being used. The
approach can parallelize these modules when the number of re-
quests in the queue is large (and the request being routed has already
been processed by the length predictor). (i) takes us 0.01 (on GPU)
and 0.8 (on CPU) seconds per batch of size 64 and (ii) takes < 106
operations (within miliseconds) to process.

C.5 Details of Dataset
From each dataset, we take the subset of prompts that have a maxi-
mum prompt length of 1000 tokens.

C.5.1 Prompts. For each task, the prompt is created in the follow-
ing manner:

Sentiment Analysis (IMDb dataset). For each review in the dataset,
we randomly select one of the following sentences and add it to the
review:

(1) "Based on this review, judge if the user liked this movie or
not?"

(2) "Please identify if the review is positive or negative?"
(3) "Based on this review, should we recommend this movie to

other users with similar tastes?"

We add these tasks either at the beginning or at the end of the
prompts, again randomly.

QnA (Eli5 Reddit subset). We pick the question in the title as it is
and provide it as the prompt to the LLM.

Entity Recognition (WNUT dataset). We add the suffix "Can you
identify the <entity> mentioned in the above sentence?" where
<entity> is selected ranomdly from "person", "place", and "object".

In context QnA (SQuAD dataset). We add the question as well as
the four options of the answer to the prompt and ask the LLM to
select the correct option and provide reasoning with it as well.

Translation (Books dataset). We provide the text and add the
phrase "Please translate this text into <language>" either at the
start or at the end of the text. <language> is selected from the ones
provided in the dataset itself.

C.5.2 Task Hints. For providing a hint of the task to the model,
we add the phrase "This is a <task> task" at the end of each prompt
before providing it to the classifier.
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Source Task Samples Average Tokens Heavy Decode Accuracy
Prompt Decode SOTA Ours

Books Tiedemann [40] Translation 7351 29.09 61.76 9.18% 4.47% 93.10%
Eli5 (Reddit subset) Fan et al. [11] QnA 6988 29.83 334.40 58.18% 5.91% 70.36%

IMDb Maas et al. [24] Sentiment Analysis 6564 211.54 142.53 41.01% 6.81% 79.92%
SQuAD Rajpurkar et al. [34] In-context QnA 7122 125.16 220.02 47.95% 6.22% 65.27%
WNUT Derczynski et al. [8] Entity Recognition 3304 26.41 64.10 8.71% 2.76% 95.06%

Total - 31329 89.03 175.71 35.54% 5.5% 79.15%
Table 3: Dataset and Performance of Output Length Predictor. Average prompt and decode tokens varies across data sources.
The second last column indicates the percentage of requests with heavy decodes (≥ 5 seconds estimated completion time) and
the last column indicates the accuracy of our decode length predictor model described in subsection 4.1 for each source.

Figure 7: Prompt decode distribution for our dataset with
responses generated from Llama 2 7B model.

(a) Distribution of entire trace

(b) Distribution of certain applica-
tions

Figure 8: Prompt-decode distribution of the production traffic
from Cloud provider X.

C.6 Prompt-Decode Distribution
Figure 7 shows the distribution of prompts and decode tokens
across the different datasets we mixed. We can clearly see the

different distributions each dataset has. Prompts from Eli-5 Reddit
subset are shorter in length and have longer responses than the
rest of the dataset, while the IMDb distribution on the other hand
has longer prompt lengths and shorter responses. Such a varied
distriubtion contributes to the low accuracy of the current SOTA
model by Jin et al. [18].

C.7 Training details of the output length
predictor

We had a total of 31329 samples in our mixed dataset, from which
we had an 80:20 train-test split. We had a train time accuracy of 81%
after performing 6 epochs of fine-tuning with the entire training
set.

C.8 Task Predictability
We predict the task of a prompt sampled from our dataset described
in section 3 using DistillBERT, the same methodology we use to
predict their output length bucket as discussed in subsection 4.1.
We observe an accuracy of 93.79%.

This allows us to proceed safely with the assumption that we
can provide task type as part of the prompt to the output length
predictor.

C.9 Licenses
(1) WNUT Dataset: CC-by-4.0
(2) SQuAD dataset: CC-by-SA-4.0
(3) vLLM: Apache-2.0

C.10 Details of RL training
For our experiments, we use 4 LLMmodel instances to route among.
This results in our state space having 27 dimensions (6 for each
model instance and 4 for the request queue at the router). In or-
der to bound our state space, we round the estimated capacity
available at each model instance and the estimated completion
time for the earliest request to two decimal places. We also upper
bound the waiting queue length that we provide to the DQN to
4 × (max batch size) = 4 × 128 = 512. We provide the DQN with
3 buckets: 0-256, 256-2048, ≥ 2048.

C.10.1 Q-Learning. Q-Learning yields poor performance for our
task due to the size of the state space. If we upper bound the total
number of requests that can be present at a model instance to 150
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Figure 9: Training reward for workload guided RL

(a) Baseline RL
(b) Workload Aware
RL

(c) Workload Guided
RL

Figure 10: Rewards collected during testing for each strategy

(even though there can be infinitely many) and the prompt and
decode length to 4096 (maximum content window of LLama-2 7B),
each model instance can be in 150 × 150 × 100 × (4096 × 150 ×
grad2 × 100) = 3.0405 × 109 different states. This would result in a
total of (3.0405 × 109)4 × 512 × 4096 × 3 ≈ 5 × 1044. Even though
we will never visit most of these states, the possible states that be
visited are large enough to make Q-Learning infeasible.

C.10.2 Training Rewards. Figure 9 Shows the rewards collected
during training of the RL model. We see that the guidance heuristic
helps the agent converge. After episode 20, we no longer use explore
with random actions and exploit this knowledge.

C.10.3 Double-DQN. We take a double DQN approach for our
RL agent. We set the request completion reward to 60 and train
our DQN with a batch size of 512. We use a neural network with
layer sizes (27, 64), (64, 64), (64, 5) and ReLU activation function
for layers 1 and 2.

Figure 10 shows the rewards collected by each strategy during
testing. Requests stop arriving at iteration number 4000, after which,
we see the rewards tend to positive values due to the high request
completion reward.

C.11 Additional experiments to validate the
scalability of proposed framework

To further test the scalability of our approach, we tested our meth-
ods with eight model instances. We increased the number of pro-
cessed requests to 4,000 and the request arrival rate to 40/s to re-
main consistent with previous experiments. To scale our approach,
we needed to increase the parameters in our neural network. Our
methods outperformed the Round-Robin approach in this setup as
well. On average, Baseline RL, Workload Aware RL, and Workload
Guided RL outperformed Round Robin by 5.84%, 6.64%, and 11.62%,
respectively.

C.12 Experiments on Real Production Trace
from Cloud Provider X

Next, we validate our approach using one hour production trace
from Cloud provider X. We use 4000 requests for our experiments,
with average prompt length of 5526.64 tokens and average decode
length of 112.69 tokens. We do our experiments at 80 requests
per second, again using Llama-3.1-8B model. We enable chunk-
ing for this experiment with maximum number of batched tokens
set to 1024. Round robin takes 1005.31 seconds on average (across
20 random iterations). We see that the advantages of our algo-
rithms are less pronounced when the prompt length becomes much
longer than the decode length, with advantages of baseline RL,
workload aware RL and workload guided RL reducing to 2.28%
(982.38 seconds), 4.39% (961.17 seconds) and 7.84% (926.49 seconds)
respectively. This can also be attributed to the lesser number of
preemptions happening as the decode length has gotten shorter.

To reduce the overhead of output length prediction, we assume
the unavailability of prompt content and only assume the avail-
ability of prompt token count. Therefore, for the bucket prediction
module, we train a Random Forest which takes the prompt length
of the request along with the application name associated with the
request. Using the same bucket sizes as before, this module is able to
achieve 79% accuracy (while 68.44% of the requests were in bucket
0) due to the predictable nature of production traffic. Figure 8 shows
the prompt and decode distribution from the production trace. The
prompt and decode distribution of applications from the production
trace show distinct trend as shown in Figure 8b which makes the
decode length predictable with prompt length and application type.

C.13 Additional Proofs
Reshaping the MDP (M) with heuristic guided RL preserves the
value bounds and linearity of the original MDP: 1) Ifℎ(𝑠) ∈ [0, 1

1−𝛾 ],
then value function corresponding to the policy,𝜋 , 𝑉̃ 𝜋 (𝑠) ∈ [0, 1

1−𝛾 ]
for all 𝜋 and 𝑠 ∈ S. 2) If M is a linear MDP with feature vector
𝜙 (𝑠, 𝑎) (i.e. 𝑟 (𝑠, 𝑎) and E𝑠′ |𝑠,𝑎 [𝑔(𝑠′)] for any 𝑔 that can be linearly
parameterized in 𝜙 (𝑠, 𝑎) [6].
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