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Abstract
Centralized platforms like TikTok are cause for significant
concerns over information control, censorship, and bias. De-
centralized systems offer a promising alternative, but their
adoption is hindered by the lack of effective relevance rank-
ing of search results. Existing decentralized approaches rely
on heuristics that do not adapt to user behavior. This paper
presents DART, the first decentralized ranking algorithm
to leverage machine learning over users’ search activities.
DART adapts its ranking function using a Transformer-based
learning-to-rank model trained on a real workload from a de-
centralized file-sharing application. We find that it improves
over the best baseline by 19% on our ranking metric (MRR).

CCSConcepts: •Computer systems organization→Peer-
to-peer architectures; • Information systems→ Learn-
ing to rank.
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1 Introduction
TikTok’s video recommendation algorithm can be used for
election interference. For instance, Romania has annulled
the 2024 presidential elections. In this case, the European
Commission considers “TikTok’s recommender systems” to
be the target of “coordinated inauthentic manipulation or
automated exploitation of the service” [6]. At the same time,
no decentralized alternatives exist to TikTok, Google, or
other Big Tech offerings. We aim to offer an alternative to Big
Tech’s black-box recommender systems, which determine
what we read, see, believe, and vote. To do so, we leverage
recent advances in machine learning to learn to recommend,
i.e., rank, information in decentralized networks. We present
the first such decentralized learning-to-rank algorithm.
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We focus on the problem of decentralized ranking of
search results. This focus is only one part of the greater goal
of decentralized search [17]. Decentralized search is charac-
terized by a network of nodes, which locally store only part
of the “global” information that is stored among all nodes.
When a node requires information that it does not store it-
self, it must request and rank information from other nodes.
However, decentralized ranking itself works best with global
information [1]. Thus far, no decentralized search algorithm
has mitigated this chicken-and-egg problem sufficiently, to
achieve mass popularity. Centralized platforms dominate, as
they simply offer a superior experience.
The lack of global information can be overcome by not

depending on it for ranking. For this reason, all related rel-
evance ranking work in decentralized systems is based on
static heuristics [9, 10, 16, 18, 23, 30]. This is a problem, as
information is not static. New information may be intro-
duced [1] and changes in wordings of descriptions may oc-
cur, also known as “semantic drift” [34]. Any ranking must
continually adapt to changes in information. We propose
to use machine learning to adapt to the dynamic nature of
information in decentralized systems.

Recently proposed attention models, known as Transform-
ers [28], are validated for ranking in a non-decentralized con-
text [20, 21] and particularly promising in their application to
decentralized ranking. These machine learning models offer
light-weight inference that can feasibly be run by nodes with
even lower-end hardware. At the same time, these models
can deal with the dynamic nature of information in decen-
tralized ranking systems. They can use online learning, i.e.,
fine-tuning, as new information is introduced.

We propose to make use of Transformers to continuously
learn to rank information in a decentralized network. Our
contribution is the design, implementation, and evaluation of
a decentralized learning-to-rank algorithm. We call this
algorithmDecentralized Adaptive Ranking using Transformers
(DART). Furthermore, we provide the first learning-to-rank
dataset compiled from workload on a decentralized system.
We introduce the concept of learning-to-rank and also

give an overview of the related work in decentralized rel-
evance ranking in Section 2, we define our system model
and assumptions in Section 3, give the design of DART in
Section 4, outline our methodology in Section 5, and present
the experimental evaluation in Section 6.
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2 Background and Related Work
Users tend to focus their attention on the first 2–3 search
results [32]. Hence, effective relevance ranking is paramount.
Learning-to-rank (LTR) describes a class of machine learn-
ing techniques that optimizes the ranking in a list of search
results based on patterns learned from past user interac-
tions. Research on the topic dates back to the late 2000s
and has since been a crucial technology in information re-
trieval [4, 15]. Recent approaches have started leveraging the
Transformer architecture, enabling context-aware ranking
models that improve upon traditional methods by employing
self-attention mechanisms [20, 21]. For our model, we build
upon the framework presented by Pobrotyn et al. [21]. We
consider this state-of-the-art in LTR, as they have demon-
strated significant improvements over traditional approaches
across standard benchmarks. Compiling feature vectors for
query-document pairs is a crucial step in any LTR-based sys-
tem [13]. Mostly, those vectors are composed of term-based
metrics, including formulas like BM25, which get extracted
from different elements of the document (e.g., body, title,
URL) [24]. In addition, quality scores like PageRank and us-
age statistics like dwell time also contribute to the feature set.
Available LTR datasets, such as WEB30k [24], Istella [8], and
Yahoo!’s [5], are curated by companies operating centralized
web search engines.

Ranking based solely on term-based metrics ignores a lot
of additional information that can serve as strong indicators
to assess the relevance of a document to the user and their
specific query. Google’s PageRank algorithm has inspired
a lot of research on decentralized web search [1, 2, 19, 31].
However, its principles do not extend to multimedia content
search (i.e., files with no cross-links) on which we focus in
this work. Other metrics must be considered as potential
indicators of relevance. A strong indicator of relevance is
the popularity of a document. In decentralized storage sys-
tems, this metric can be extracted from the resource quantity,
i.e., the number of nodes that provide it [9, 23, 30]. Rank-
ing by resource quantity has been proposed early on for
Gnutella [9]; it was implemented for the BitTorrent-based
client Tribler [23]; more recently, it has been proposed for
IPFS in CASearch [30]. Furthermore, ranking in CASearch
relies on bandwidth as an estimator for both content locality
and expected transmission speed. CASearch and Tribler also
consider the “freshness” of a document, i.e., the time since its
inception, in their respective ranking functions. MAAY [18]
and UsersRank [19] account for the freshness of user engage-
ment with a document, rather than the document’s publi-
cation age, within their ranking functions. Tribler uses the
number of leechers (i.e., peers that actively download the file)
to derive a similar metric. MAAY and UsersRank, further-
more, incorporate elements of collaborative filtering. Col-
laborative filtering is also at the core of G-Rank [10], which
examines commonalities between nodes and their behavior.

User

Ranker

(3) Reranked documents

Clicklog Database

(4) Clicks

(5) Training data

Network

(1)Query

(2) Documents

Synchronization via gossip

Figure 1. Overview of the system model and its interactions.

3 System Model
This section describes our system model, including its scope
and actors, and the assumptions we make. An overview of
our system model is illustrated in Figure 1 and it consists
of five main steps. A user sends a query (1) to the network,
which returns results (2) that are reranked by the ranker
(3). The user’s clicks (4) are stored in the clicklog database,
which provides training data (5) to improve the ranker. Users
gossip their clicklogs and store them in their local database.
Our system considers a network of nodes, which form a

connected graph. Assuming the graph remains connected,
nodes may join or leave the network at any time. We as-
sume nodes engage in decentralized searches, i.e., searches
for information that other nodes store. Two main types of
information exist in our system: queries and documents.
Every search consists of a node sending another node a

query created by the user that operates the node. Whenever
a node receives such a query from another node, we assume
it answers with results. We call these results documents. Fur-
ther, we assume they have a title, along with user-annotated
tags, and a number of seeders and leechers. Seeders denote the
number of nodes storing the document, while leechers de-
note the number seeking the document at any given moment.
We assume documents can be retrieved from a distributed
database based on their title, using traditional text-based
matching of query and document title.

After a node receives documents as the results of its query,
it engages in ranking of the documents using a local model.
The goal of this ranking is to maximize the likelihood that the
user clicks the first ranked item, whenever the ranked results
are displayed in a user’s interface. We explicitly note that a
click is personal to a user. Therefore, there is no consistent
ranking of results for all nodes.

4 Design of DART
We introduce DART, the first self-learning decentralized
ranking algorithm. Our model architecture is based on the
learning-to-rank framework proposed by Pobrotyn et al. [21],
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Figure 2. Model architecture and data flow.

which we adapt to our decentralized setting. All hyperpa-
rameters presented in this section are derived from prelimi-
nary experiments designed for optimal performance on our
dataset, specifically our first experiment (Section 6.1).
This architecture leverages the self-attention mechanism

of transformers to construct a context-aware ranker. That
is, rather than scoring items independently, the scoring is
influenced by the interactions with other items in a given list.
We show the model architecture and data flow, which we ex-
plain momentarily, in Figure 2. The re-ranking of documents
is defined as 𝑅(𝑋), where the input

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} with 𝑥𝑖 ∈ ℝ𝑓

denotes the set of 𝑛 results retrieved for a given query. The
ranker processes the input as a sequence of tokens. Each
token 𝑥𝑖 ∈ ℝ𝑓 represents a vector of 𝑓 = 31 features en-
coding the relevance of a document to a particular query
(see Table 1). The set of features is inspired from traditional
learning-to-rank datasets [24], as well as extracted from re-
lated work, namely Tribler [23], DINX [9], and Panaché [16].
We verified the utility of each feature through an ablation
study (see Table 2). The number of features is smaller than
that used in classical learning-to-rank datasets (see Table 3).
This allows for a smaller model, which reduces computa-
tional and memory overhead and fits our target deployment
on consumer-grade devices, which may lack dedicated GPUs.
The input tokens are linearly projected through a shared

fully connected layer FCEmbed to a space of size 𝑑FC = 24
and subsequently augmented with fixed positional encoding.
As the retrieved result set is already ordered according to
some preliminary ranking, we use positional encoding to
correct for position bias. This transforms each input token
𝑥𝑖 ∈ 𝑋 into its embedding form

𝑒𝑖 = FCEmbed(𝑥𝑖) + PosEnc(𝑖), 𝑒𝑖 ∈ ℝ𝑑FC .
The sequence of input embeddings {𝑒1, 𝑒2, … , 𝑒𝑛} passes

through a Transformer encoder block with two attention
heads, a hidden dimension of 96, and a dropout rate of 0.1.
This encoder outputs a sequence of context-aware embed-
dings {𝑧1, 𝑧2, … , 𝑧𝑛} with 𝑧𝑖 ∈ ℝ𝑑FC .

Table 1. Features of a Document-Query Pair

ID Description

0 BM25 score [25]
1–5 Term frequency (TF): min, max, mean, sum, and

variance [26]
6–10 Inverse document frequency (IDF): min, max,

mean, sum, and variance [26]
11–15 TF*IDF: min, max, mean, sum, and variance [26]

16 Cosine similarity of the TF*IDF 5-tuple
17 Number of query terms in the document title
18 Ratio of query terms in the document title
19 Number of characters in the document title
20 Number of terms in the document title
21 Number of terms in the query
22 Query matches document title exactly
23 Ratio of query terms matching the document title
24 Number of nodes storing the doc. (seeders) [23]
25 Number of nodes querying the doc. (leechers) [23]
26 Number of times the doc. has been clicked [9]
27 Number of times the documentwas selectedwhen

one of the document’s terms was also part of the
query terms (hit count) [16]

28 Document rank in the result, before re-ranking
29 Number of user-annotated document tags [23]
30 Freshness (time since document creation) [23, 30]

Table 2. Ablation Study

Method Feat. IDs MRR Δ

DART (base) – 0.380 –
w/o term-based features 0–23 0.373 -0.007
w/o number of seeders 24 0.368 -0.012
w/o number of leechers 25 0.374 -0.006
w/o click count 26 0.374 -0.006
w/o query hit count 27 0.379 -0.001
w/o pos 28 0.368 -0.012
w/o tag count 29 0.375 -0.005
w/o freshness 30 0.377 -0.003

To obtain ranking scores, the tokens are independently
processed through another shared fully connected layer
FCScore, again of size 𝑑FC. The output of this layer is activated
by a sigmoid activation function to normalize the scores:

𝑠𝑖 = 𝜎(FCScore(𝑧𝑖)), 𝑠𝑖 ∈ [0, 1].

The ranking model is optimized using the NeuralNDCG
loss function, which directly approximates the NDCG metric
used for ranking performance evaluations, and has been
demonstrated to work best with this model architecture [22].
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Further, the model undergoes training for up to 100 epochs,
incorporating an adaptive learning rate and early stopping
with a patience of 5 to prevent overfitting. In total, the model
comprises 8065 parameters, with a memory footprint of just
31.5 kB.

Table 3. Learning-to-Rank Datasets

Dataset Queries Users Features

WEB30k [24] 30 000 not published 136
Istella [8] 33 018 not published 220
Yahoo! [5] 29 921 not published 700
Tribler 9068 948 31

5 Method
This section gives the method by which we perform our ex-
perimental evaluation in Section 6. In our evaluation, we
compare the performance of DART with the state-of-the-art
of decentralized ranking algorithms (see Table 4) in three
experiments with increasing realism. Furthermore, we add
our own variation of DINX, which leverages the number of
seeders as a popularity metric alternative to click counts,
dubbed DINX-s. We re-rank documents in our dataset us-
ing each algorithm and assess its performance using Mean
Reciprocal Rank (MRR), a standard metric for ranking evalu-
ation [29, 33]. We explain this metric in Section 5.2.

Table 4. Baselines of Ranking Algorithms for Decentralized
Multimedia Search (CD = Context-Dependent)

Algorithm Year Ranking Strategy CD

DINX [9] 2001 Order by click counts ●
DINX-s Order by seeders ○
Panaché [16] 2002 Order by keyword hit count ●
MAAY [18] 2006 Personalized to user’s inter-

est in queried terms, doc.
popularity and relevance

●

Tribler [23] 2008 Heuristic based on title, seed-
ers, leechers, freshness

○

G-Rank [10] 2023 User and doc. similarity ●
DART 2025 Machine learning ●

5.1 Dataset
Available datasets from centralized (web) search engines like
AOL [12] or Bing [24] lack key attributes specific to decentral-
ized applications, such as seeders and leechers. Furthermore,
decentralized content has a different structure, e.g., the ab-
sence of semantic identifiers (URLs). Document titles also
tend to follow domain-specific naming conventions, often
including metadata such as release years, quality indicators,

and encoding formats. Given these distinct attributes, pub-
licly available datasets prove inadequate. This makes the
construction of a dedicated dataset essential for the realistic
evaluation of our algorithm in decentralized settings. There-
fore, we created our own dataset based on workload from a
real decentralized application, Tribler.

Tribler is a fully decentralized file-sharing application [23]
with integrated search and anonymized file sharing. Tribler
has been part of an ongoing research project since 2005 and
has over 40 000monthly active users [27]. Tribler uses gos-
sip for search, content discovery, and node discovery. We
deployed a crawler to initially discover identifiers, seeders,
and leechers, of documents in the public Tribler network. We
later enriched this data with the document’s title, creation
date, and number of user-annotated tags, again by query-
ing the network. Using a temporary access-restricted API
(to disallow potential abuse) we obtain search result lists,
including the query, the ordered result list, and the clicked
result position. Our code, as well as our dataset of compiled
feature vectors, is available on GitHub [11].

5.2 Evaluation Metric
Numerous metrics have been developed to evaluate the qual-
ity of result ranking in information retrieval systems. The
most commonly used metrics [4, 21, 33] are Normalized Dis-
counted Cumulative Gain (NDCG) [14], Mean Average Pre-
cision (MAP) [3], and Mean Reciprocal Rank (MRR) [29].
NDCG considers the full list of results and measures its

alignment with the ideal ranking.This metric, however, is not
a good fit for decentralized workloads. Each clicklog contains
exactly one relevant document, with all others considered
irrelevant. Thus, an “ideal” ranking can be any arbitrary or-
der of results as long as the relevant document is found at
position 1. This is different from, e.g., WEB30k [24], where
documents are graded with multiple judgment levels. As
pointed out by Cao et al. [4], when relevance judgments
are binary (either relevant or irrelevant), the appropriate
metric is MAP. In our special case, because our dataset al-
ways determines exactly one relevant document per query,
MAP simplifies to MRR. We calculate MRR by averaging the
Reciprocal Rank (RR) across all evaluated clicklogs. RR is
calculated as

RR = 1
rank of relevant document

.

Hence, its value ranges from 0 to 1, where a score of 1 indi-
cates optimal ranking.

Furthermore, we report Recall@𝑘 for a more intuitive and
easily interpretable evaluation. Recall@𝑘 quantifies the per-
centage of times that the desired document appears within
the top-𝑘 presented results.
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6 Experimental Evaluation
Our first experiment partitions the entire dataset into a con-
text and test set. Our second experiment examines ranking
performance when the context is smaller, i.e., clicklogs are
more scarce. Finally, our third experiment simulates a decen-
tralized system aligned with our envisioned system model
(see Section 3). It, therefore, provides the most realistic eval-
uation of DART and the baseline algorithms.

Recall that DART and other baselines depend on context,
i.e., a set of observed clicklogs before application, for their
performance. Henceforth, we refer to the context used for
our evaluations as 𝐶ctx ⊂ 𝐷, where 𝐷 denotes all |𝐷| =
9068 clicklogs available in our dataset. Similarly, 𝐶test ⊂ 𝐷
denotes the set of clicklogs used for testing and evaluation.
In all instances, 𝐶ctx and 𝐶test are disjoint. For evaluations
of Tribler and DINX-s, 𝐶ctx is ignored.

6.1 Ranking Performance
Our first experiment demonstrates the ranking performance
of each algorithm on a random sample of 10% of the en-
tire dataset, where the remainder is considered as context.
Explicitly, we partition 𝐷, such that

|𝐶test| =
|𝐷|
10

and 𝐶ctx = 𝐷 ∖ 𝐶test.

While Tribler and DINX-s are stateless algorithms that do not
operate on context, the other algorithms rely on context.That
includes DART, which derives its training and validation set
from it.
As we show in Table 5, DART significantly outperforms

the second-best algorithm, Tribler, which corresponds to the
dataset’s original ranking. To illustrate this improvement,
Figure 3 compares the distribution of clicked positions for
Tribler and DART. As desired, the distribution shifts to the
left, indicating that users are more likely to click results
ranked closer to the top. The average position for relevant
documents improved significantly, from 22 to 15. Further-
more, we note a high variance across all algorithms. We
postulate that this is caused by the high variance in result
set sizes within our dataset.
While DINX, Panaché, MAAY, and G-Rank show lower

MRR and Recall than the competition, their ability to sur-
pass random ranking indicates that their metrics capture
relevance at least to some extent. We postulate that with a
bigger data set or more homogeneous data, these algorithms
would perform better. Our following experiment will shed
more light on it.

6.2 Impact of Context Size on Performance
Tribler and DINX-s are stateless, meaning they rank docu-
ments based solely on static features such as document title,
seeders, and freshness. DINX, as well as Panaché, MAAY,
and G-Rank, on the other hand, maintain a state that is up-
dated with each observed clicklog. Their ranking decision

Table 5. Ranking Performance (Rec.=Recall)

Algorithm MRR (± SD) Rec.@1 Rec.@5 Rec.@10

Random 0.18 ± 0.26 0.15 0.31 0.42
G-Rank 0.25 ± 0.32 0.22 0.41 0.52
MAAY 0.27 ± 0.34 0.26 0.43 0.52
Panaché 0.28 ± 0.35 0.25 0.43 0.53
DINX 0.28 ± 0.34 0.26 0.46 0.55
DINX-s 0.31 ± 0.36 0.28 0.49 0.61
Tribler 0.32 ± 0.35 0.31 0.50 0.61
DART 0.38 ± 0.37 0.38 0.61 0.73
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Figure 3. Comparison of clicked position distributions for
Tribler and DART, truncated at position 30.

is influenced by this data, and moreover, by the amount of
this data. As an ML-based algorithm, this also holds true for
DART. The number of available clicklogs may vary between
peers, e.g., depending on their uptime in the network. We
are therefore interested in an analysis of the relationship
between ranking performance and the number of observed
clicklogs.

For this experiment, we evaluated different context sizes,
setting

|𝐶ctx| = 𝑖 for 𝑖 ∈ [0, 1, … , |𝐷| − 100].

In every iteration, we also randomly sampled

𝐶test ⊂ 𝐷 ∖ 𝐶ctx, such that |𝐶test| = 100.

The compilation of large sets of clicklogs into the feature
vectors needed for DART is computationally expensive. For
practical reasons, therefore, we do not evaluate DART for
every step in the interval but instead increase the size by
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Figure 4. Ranking performance with increasing context size.
Adaptive smoothing has been applied.

roughly 10% each time (i.e., 𝑖 ← ⌊1.1 ⋅ 𝑖⌋+1). We show the re-
sults of this experiment in Figure 4. Due to the high variance
in the data, we present a smoothed representation using a
moving average1 to make the trend more apparent. As ex-
pected, Tribler and DINX-s are unaffected by the number
of observed clicklogs and demonstrate stable performance
from the onset. DART, however, quickly overtakes both base-
lines at only 56 observed clicklogs. Other algorithms’ MRR
increases steadily but at a much slower pace. That trend sug-
gests that the peak for those algorithms is still ahead, with
some algorithms likely surpassing Tribler and DINX-s after
around 10 thousand clicklogs.

6.3 Decentralized Network Simulation
We finally demonstrate DART’s performance in a simulated
decentralized setting. When users perform searches, queries
and clicked documents often relate to previously issued
searches. Losing this correlation poses a challenge for DINX,
Panaché, MAAY, and G-Rank, which rely on exact term
match statistics. DART is more flexible as it is able to gen-
eralize from abstract user engagement patterns rather than
depending on exact term matches. Nonetheless, it remains
sensitive to extreme diversity in its context data. Recall, for
example, that the term-based click counters of DINX and
Panaché are included in DART’s feature set (feature ID 26
and 27 in Table 1). In this experiment, we simulate a decen-
tralized network by preserving the original user mappings
and chronology of the clicklogs in our dataset. This approach
ensures the most realistic evaluation of DART.
Specifically, for this experiment, we filtered our dataset

to include only users with at least 10 clicklogs that have
at least 30 documents in their result set, respectively. This
amounted to a total of 112 users with varying amounts of
1We applied a moving avg. over a window of 200 data points. Fort DART, in
particular, we used a window size that decays logarithmically from 20 to 1.
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Figure 5. Ranking performance aggregated over 112 peers.

clicklogs. Consistent with prior experiments, we partition
each user’s set of clicklogs into 90% context and 10% for
testing. Contrary to prior experiments, however, we respect
the original chronology of clicklogs, such that the test set
corresponds to 10% of each user’s most recent queries.

Given our assumption of full clicklog gossip, each user is
exposed to the complete set of context clicklogs, meaning
they all operate on the same dataset. Thus, for DART, we
simplify the experiment by training just one model. Finally,
we test the model against each user’s test set individually.
Our baselines, accordingly, make their rankings on the users’
test sets on the basis of all context clicklogs. This led to the
results shown in Figure 5. We observe that DART outper-
forms Tribler (𝑝 = 0.12), DINX-s (𝑝 = 0.36), and our other
baselines (𝑝 < 0.0009), in terms of RR.

7 Conclusion
Decentralization of any algorithm is challenging and decen-
tralized relevance ranking is a known difficult problem. AI
may underpin the revival of the peer-to-peer movement, as
Big Tech further gains dominance. We established the base-
line for such decentralized ranking using transformers. How-
ever, significant gains remain beyond our baseline, we be-
lieve. With our privacy-preserving dataset and open-source
prototype, we aim to contribute to further advancing decen-
tralized search. However, deployment of fully decentralized
machine learning whilst also offering privacy and spam re-
silience remains unsolved. In 2012, we successfully deployed
decentralized SGD inside Tribler [7]. We are working on
deploying DART. We believe that within a few years, the
problems of scalability, privacy, attack-resilience, and contin-
uous learning of deployed decentralized machine learning
will be mitigated.

Acknowledgments
This work was funded by Dutch national NWO/TKI science
grant BLOCK.2019.004.

17



Decentralized Adaptive Ranking using Transformers EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

References
[1] Karl Aberer and Jie Wu. 2003. A framework for decentralized ranking

in web information retrieval. In Asia-Pacific Web Conference. Springer,
213–226.

[2] Reaz Ahmed, Md Faizul Bari, Rakibul Haque, Raouf Boutaba, and
BertrandMathieu. 2014. DEWS: A decentralized engine forWeb search.
In 10th International Conference on Network and Service Management
(CNSM) and Workshop. IEEE, 254–259.

[3] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. 1999. Modern infor-
mation retrieval. Vol. 463. ACM press New York.

[4] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007.
Learning to rank: from pairwise approach to listwise approach. In
Proceedings of the 24th international conference on Machine learning.
129–136.

[5] Olivier Chapelle and Yi Chang. 2011. Yahoo! learning to rank challenge
overview. In Proceedings of the learning to rank challenge. PMLR, 1–24.

[6] European Commission. 2024. Commission opens formal proceedings
against TikTok on election risks under the Digital Services Act. Press
release IP/24/6487. Available from https://ec.europa.eu/commission/
presscorner/detail/en/ip_24_6487.

[7] Kornél Csernai and Márk Jelasity. 2012. Distributed machine learning
using the tribler platform.

[8] Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore
Orlando, Raffaele Perego, Nicola Tonellotto, and Rossano Venturini.
2016. Fast ranking with additive ensembles of oblivious and non-
oblivious regression trees. ACM Transactions on Information Systems
(TOIS) 35, 2 (2016), 1–31.

[9] Blaise Gassend, Thomer M Gil, and Bin Song. 2001. DINX: A decen-
tralized search engine. (2001).

[10] Andrew Gold and Johan Pouwelse. 2023. G-Rank: Unsupervised Con-
tinuous Learn-to-Rank for Edge Devices in a P2P Network. arXiv
preprint arXiv:2301.12530 (2023).

[11] Marcel Gregoriadis. 2025. DART: Research Repository. GitHub reposi-
tory: https://github.com/mg98/DART. Accessed: 11-02-2025.

[12] Qian Guo, Wei Chen, and Huaiyu Wan. 2021. AOL4PS: A large-scale
data set for personalized search. Data Intelligence 3, 4 (2021), 548–567.

[13] Xinzhi Han and Sen Lei. 2018. Feature selection and model comparison
onmicrosoft learning-to-rank data sets. arXiv preprint arXiv:1803.05127
(2018).

[14] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based
evaluation of IR techniques. ACM Transactions on Information Systems
(TOIS) 20, 4 (2002), 422–446.

[15] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval.
Foundations and Trends® in Information Retrieval 3, 3 (2009), 225–331.

[16] Tim Lu, Shan Sinha, and Ajay Sudan. 2002. Panache: A scalable dis-
tributed index for keyword search. Technical Report. Citeseer.

[17] Petru Neague, Marcel Gregoriadis, and Johan Pouwelse. 2024. De-DSI:
Decentralised Differentiable Search Index. In Proceedings of the 4th
Workshop on Machine Learning and Systems. 134–143.

[18] Frédéric Dang Ngoc, Joaquín Keller, and Gwendal Simon. 2006. MAAY:
a decentralized personalized search system. In International Sympo-
sium on Applications and the Internet (SAINT’06). IEEE, 8–pp.

[19] Athanasios Papagelis and Christos Zaroliagis. 2012. A collaborative de-
centralized approach to web search. IEEE transactions on systems, man,
and cybernetics-part a: systems and humans 42, 5 (2012), 1271–1290.

[20] Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao
Sun, Jian Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, et al. 2019. Person-
alized re-ranking for recommendation. In Proceedings of the 13th ACM
conference on recommender systems. 3–11.

[21] Przemysław Pobrotyn, Tomasz Bartczak, Mikołaj Synowiec, Radosław
Białobrzeski, and Jarosław Bojar. 2020. Context-aware learning to rank
with self-attention. arXiv preprint arXiv:2005.10084 (2020).

[22] Przemysław Pobrotyn and Radosław Białobrzeski. 2021. Neuralndcg:
Direct optimisation of a ranking metric via differentiable relaxation of

sorting. arXiv preprint arXiv:2102.07831 (2021).
[23] Johan A Pouwelse, Pawel Garbacki, Jun Wang, Arno Bakker, Jie

Yang, Alexandru Iosup, Dick HJ Epema, Marcel Reinders, Maarten R
Van Steen, and Henk J Sips. 2008. TRIBLER: a social-based peer-to-peer
system. Concurrency and computation: Practice and experience 20, 2
(2008), 127–138.

[24] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets. CoRR
abs/1306.2597 (2013). http://arxiv.org/abs/1306.2597

[25] Stephen E Robertson and Steve Walker. 1994. Some simple effective
approximations to the 2-poisson model for probabilistic weighted re-
trieval. In SIGIR’94: Proceedings of the Seventeenth Annual International
ACM-SIGIR Conference on Research and Development in Information
Retrieval, organised by Dublin City University. Springer, 232–241.

[26] Karen Sparck Jones. 1972. A statistical interpretation of term specificity
and its application in retrieval. Journal of documentation 28, 1 (1972),
11–21.

[27] Tribler. [n. d.]. Release dashboard | Tribler. https://release.tribler.org/
dashboard/. [Accessed 11-02-2025].

[28] A Vaswani. 2017. Attention is all you need. Advances in Neural
Information Processing Systems (2017).

[29] Ellen M Voorhees et al. 1999. The trec-8 question answering track
report.. In Trec, Vol. 99. 77–82.

[30] Feng Wang and Yanjun Wu. 2020. Keyword search technology in
content addressable storage system. In 2020 IEEE 22nd International
Conference on High Performance Computing and Communications; IEEE
18th International Conference on Smart City; IEEE 6th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE,
728–735.

[31] Jie Wu and Karl Aberer. 2004. Using siterank for decentralized compu-
tation of web document ranking. In Adaptive Hypermedia and Adaptive
Web-Based Systems: Third International Conference, AH 2004, Eindhoven,
The Netherlands, August 23-26, 2004. Proceedings 3. Springer, 265–274.

[32] Xinwei Wu, Hechang Chen, Jiashu Zhao, Li He, Dawei Yin, and Yi
Chang. 2021. Unbiased learning to rank in feeds recommendation. In
Proceedings of the 14th ACM International Conference on Web Search
and Data Mining. 490–498.

[33] Jun Xu and Hang Li. 2007. Adarank: a boosting algorithm for infor-
mation retrieval. In Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval.
391–398.

[34] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang,
Yongmei Cheng, Shangling Jui, and Joost van deWeijer. 2020. Semantic
drift compensation for class-incremental learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition.
6982–6991.

18

https://ec.europa.eu/commission/presscorner/detail/en/ip_24_6487
https://ec.europa.eu/commission/presscorner/detail/en/ip_24_6487
https://github.com/mg98/DART
http://arxiv.org/abs/1306.2597
https://release.tribler.org/dashboard/
https://release.tribler.org/dashboard/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 System Model
	4 Design of DART
	5 Method
	5.1 Dataset
	5.2 Evaluation Metric

	6 Experimental Evaluation
	6.1 Ranking Performance
	6.2 Impact of Context Size on Performance
	6.3 Decentralized Network Simulation

	7 Conclusion
	Acknowledgments
	References

