
Systems Opportunities for LLM Fine-Tuning
using Reinforcement Learning

Pedro Silvestre
p.silvestre21@imperial.ac.uk
Imperial College London

United Kingdom

Peter Pietzuch
prp@imperial.ac.uk

Imperial College London
United Kingdom

Abstract
Reinforcement learning-based fine-tuning (RLFT) has emerged
as a crucial workload for enhancing large language models
(LLMs). RLFT workflows are challenging, involving nested
loops, multiple models, dynamically shaped tensors and in-
terleaving sequential generation and parallel inference tasks.
Despite these complexities, current RLFT engines rely on
coarse-grained algorithm representations, treating each com-
ponent as an independently optimized black-box. As a result,
RLFT engines suffer from redundant computations, schedul-
ing overhead, inefficient memory management, and missed
opportunities for parallelism.
We argue that a fine-grained representation is needed to

enable holistic optimization for RLFT workloads. Addition-
ally, we demonstrate that existing declarative deep learning
engines fail to optimize RLFT workloads end-to-end due to
their need for static tensor shapes and loop bounds, leading
to excessive peak memory usage and unnecessary computa-
tions. Through micro-benchmarks, we quantify these ineffi-
ciencies and show that addressing them could enable more
efficient and flexible execution. We propose an RLFT system
design based on a fine-granularity representation, opening
the door to generalizable optimizations, and paving the way
for more scalable and efficient RLFT systems.
ACM Reference Format:
Pedro Silvestre and Peter Pietzuch. 2025. Systems Opportunities
for LLM Fine-Tuning using Reinforcement Learning. In The 5th
Workshop on Machine Learning and Systems (EuroMLSys ’25), March
30–April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3721146.3721944

1 Introduction
Large LanguageModels [64] (LLMs) have quickly become the
key technology powering diverse applications such as trans-
lation [64], chatbot assistants [11] and code-generation [12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroMLSys ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1538-9/25/03
https://doi.org/10.1145/3721146.3721944

Raw
Text

Adam

Prompt
Text

1 2

Full
Attn.

S.W.
Attn.

...

Ref.
Crit.
Rew.

UPT RLFT

Task
Text

Adam

SFT
Adam

Gen.

Shared Trunk 3

...

...

3
Generation Inference Training

4

Skip SFT

2

2

Fig. 1: LLM Training Pipeline. RLFT systems represent algo-
rithms at the granularity shown, leading to inefficiencies: 1 se-
quential computation-communication; 2 missed parallelism, 3
redundant work; and 4 suboptimal KV cache management.

The traditional LLM training pipeline, depicted in Fig. 1, in-
volves all major deep learning (DL) paradigms: (i) unsuper-
vised pre-training (UPT) on a large corpus of text data teaches
the model the structure of language and embues it with gen-
eral knowledge; (ii) supervised fine-tuning (SFT) on a smaller
high-quality dataset adapts the model to a specific task (e.g.
chat); finally (iii) reinforcement learning (RL) from human
feedback (RLHF) aligns the model with human values and
goals. However, SFT has been shown to degrade LLM general-
ization [67, 75], and underperform RLHF on helpfulness and
safety [35], leading researchers to skip SFT [76] and focus
further on direct RL-based fine-tuning (RLFT) methods.
RLFT is an increasingly popular generalization of RLHF,

and has been recently applied to endowmodels with novel ca-
pabilities, such as structured output generation [43], greatly
improved programming ability [20], and mathematical [54],
visual [61] and chain-of-thought reasoning [24]. While UPT
can only be undertaken by few organizations due to its
cost [49] (∼$100M), RLFT is a more accessible way to provide
new capabilities to and customize the behavior of pre-trained
LLMs (∼$10K). As long as the task can be framed as a reward
function [58], RLFT can be applied.

However, RLFT is a complex and challenging workload to
optimize (§2), due to the diversity of algorithms and model
architectures (§2.1), the scale and number of models involved
(§2.2), and the nested computations and dynamic shapes of
the dataflows between them (§2.3). Furthermore, RLFT can
be roughly split into three stages (Fig. 1) with diverse de-
mands: (i) sequential generation of a response from a prompt,
(ii) parallel inference of the response by several models and
(iii) training of the models. Such challenges demand effi-
cient, careful coordination of distributed execution, that can

90

https://doi.org/10.1145/3721146.3721944
https://doi.org/10.1145/3721146.3721944

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Silvestre and Pietzuch

only be achieved through end-to-end whole-graph algorithm
representation, optimization and scheduling.
Despite this, RLFT systems today use a coarse-grained

graph [44, 56] or have no optimizable graph representa-
tion [26, 65, 71]. Instead each component (models, PPO, opti-
mizer) is treated as a black-box, preventing holistic compiler
optimization and planning that crosses these barriers. This
not only makes RLFT systems difficult to adapt to novel
workloads, but results in diverse system inefficiencies (rep-
resented by the numbers in Fig. 1) such as:
(1) Lack ofComputation-CommunicationOverlap.Dur-
ing response generation, responses are only transferred once
generation finishes, but could be pipelined;
(2) Missed Parallelism. Pipelining transfers (1) would
allow downstream inference models (e.g., critic, reference)
to incrementally process responses in parallel with genera-
tion. Instead, RLFT engines today will first finish generation,
before executing each inference model sequentially;
(3) Redundant Work. Opportunities for reuse are missed
and instead recomputed, such as when generator and critic
share a trunk [22], orwhen the logits computed at generation-
time are recomputed during inference;
(4) Suboptimal Memory Management.Many models use
varied and often interleaved attention mechanisms [47, 60,
74] to drastically reduce memory requirements, requiring
fine-grained memory management to be effective. However,
current systems use a one-size-fits-all KV-cache policy, lead-
ing to suboptimal memory usage and performance.
Furthermore, we demonstrate that existing graph-based

DL systems (JAX or TensorFlow) are not a suitable basis for
whole-graph RLFT optimization (§3.1), due to their require-
ment for compile-time static shapes. This requirement forces
system developers into a choice between suboptimal mem-
ory management and redundant work caused by padding
and masking or, alternatively, breaking the RLFT graph into
smaller pieces, once again preventing holistic optimization.
We discuss how this affects the design of RLFT systems today
(§3.2), causing them to be imperative and built by ad-hoc
composition of specialized engines (e.g., vLLM for gener-
ation and DeepSpeed for inference and training), leading
to brittleness and impedance mismatch overhead (§3.3). For
example, we find that while the use of vLLM speeds up gener-
ation, it spends ∼40% of the overall iteration time in different
scheduling overheads.
To address these challenges, we instead argue that novel

declarative approaches are needed (§4), where entire RLFT al-
gorithms can be represented as a single, fine-granularity com-
putation graph. Such a representation must capture dynamic
accesses patterns and shapes using symbolic expressions,
allowing for holistic optimization of computation, memory
management, and communication by a compiler. We con-
clude with a discussion of open research directions and chal-
lenges in building a declarative RLFT system (§5).

... t-2 t-1 t+1 t+2 ... T0

... t-2 t-1 t t+1 t+2 ... T0

V

A

... t-2 t-1 t+1 t+2 ... T0K t

... t-2 t-1 t t+1 t+2 ... T0Q

t

(a) Full Attention

... t-2 t-1 t+1 t+2 ... T0

... t-2 t-1 t t+1 t+2 ... T0

V

A

... t-2 t-1 t+1 t+2 ... T0K t

... t-2 t-1 t t+1 t+2 ... T0Q

t

(b) Window Attention

... t-2 t-1 t t+1 t+2 ... T0A

... t-2 t-1 t t+1 t+2 ... T0Q

... t-2 t-1 t+1 t+2 ... T0PQ t

... t-2 t-1 t t+1 t+2 ... T0K

... t-2 t-1 t+1 t+2 ... T0PK t

... t-2 t-1 t+1 t+2 ... T0Z t

... t-2 t-1 t t+1 t+2 ... T0V

... t-2 t-1 t t+1 t+2 ... T0S

(c) Linear Attention

Fig. 2: Dynamic Access Patterns of Attention Mechanisms.
Different attention mechanisms depend on different past tokens,
requiring unique memory management strategies.

2 Challenges in RLFT

Generically, RLFT algorithms (Fig. 1) begin with genera-
tion, by selecting a batch of prompt strings from a dataset,
embedding them, and generating a response using the gen-
erator model 𝜋𝜃 . The generation process is itself split into
two phases: prefill and decoding. The prefill phase is highly
parallel, and involves processing the prompt tokens to popu-
late a key-value (KV) cache (§2.1). Sequential decoding then
generates the LLM response autoregressively, meaning that
each further token output by the generator is fed back as
input to generate the next token, until an end-of-sequence
(EOS) token is generated. During the inference stage, the
generated sequence is processed by downstream models.
A reference model 𝜋𝜃 ′ may be used to prevent divergence
between the current generator and the pre-training token
distributions [76]. A critic modelV𝑤 may be used to subtract
a baseline from the reward signal [68]. The reward function
R, which may be a model or a set ofmechanical rules, is used
to generate a reward signal to learn from. Mechanical rules
may use compilers, unit tests or math checkers, to verify the
correctness of the generated response. Finally, during the
training stage, an RL algorithm like PPO [53] or GRPO [54]
is used together with an optimizer such as Adam [31] to
update the generator and critic parameters.

2.1 Algorithm Variety

The first challenge in designing systems for RLFT is the
growing number of RLFT workloads.
Attention. Attention is the core operation behind LLMs. It
allows certain tokens to attend to others, influencing their
meaning. The full attention formula computes a weighted
sum of all past values based on the similarity of keys and
queries, and is given by (Eq. 1), with the attention pattern
𝑆 (𝑡) = {0 :𝑡 + 1}, as depicted in Fig. 2a. However, this scales
quadratically with the sequence length, making it infeasible

91

Systems Opportunities for LLM RLFT EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

for long sequences. Variations, such as sliding window at-
tention [10] (Fig. 2b) or block attention [73], can be achieved
by changing the attention pattern to 𝑆 (𝑡) = {𝑡−𝑤 :𝑡+1} or
𝑆 (𝑡) = {𝑏 ·⌊𝑡/𝑏⌋ :𝑡+1}, dramatically reducing the size needed
for storing prior KVs (KV cache). However, sliding window
attention loses the long-range dependencies of full atten-
tion. Instead, linear attention [30] (Eq. 2) uses a radically
different approach based on kernel approximation 𝜙 . Each
of these mechanisms requires unique memory management
strategies for efficiency.

𝐴[𝑡] = 𝜎
(
𝑄 [𝑡]𝐾 [𝑆 (𝑡)]⊺

√
𝑑𝑘

)
𝑉 [𝑆 (𝑡)], 𝑆 (𝑡) =

{
0 :𝑡+1
𝑡 −𝑤 :𝑡+1 (1)

𝑃𝐾 [𝑡], 𝑃𝑄 [𝑡] = 𝜙 (𝐾 [𝑡]), 𝜙 (𝑄 [𝑡])
𝑍 [𝑡] = 𝑍 [𝑡 − 1] + 𝑃𝐾 [𝑡], 𝑍 [0] = 0
𝑆 [𝑡] = 𝑃𝐾 [𝑡]𝑉 [𝑡]⊺ + 𝑆 [𝑡 − 1], 𝑆 [0] = 0
𝐴[𝑡] = 𝑃𝑄 [𝑡]⊺𝑆 [𝑡]/𝑃𝑄 [𝑡]⊺𝑍 [𝑡]

(2)

Model Architectures. Attention is typically computed in
parallel by multiple heads and concatenated before under-
going a linear map. GQA [3] modifies this by having fewer
value and key heads than query heads. On the other hand,
mixture-of-experts architectures [28] use a dynamic gating
mechanism to select which experts to use for each token. In
general, each model is independent, but some works [22]
explore using a shared frozen trunk, with different heads for
each model (𝜋𝜃 , 𝜋𝜃 ′ , V𝑤 , R). Others have explored mixing
attention types, using full attention only in early layers [74]
or interleaving full and window attention [47, 60].
RLFT Algorithms.Many RLFT algorithms have emerged,
tweaking the original RLHF [8] for different purposes. Safe-
RLHF [15] adds a cost model to explicitly penalize unsafe
generations, while ReMax [40] replaces the critic with an-
other reward model. RLAIF [34] uses an LLM as a reward
model itself. GRPO [54] and RLOO [2] perform multiple gen-
erations per prompt to replace the critic, but the former uses
mechanical evaluators, while the later uses a large model.
Additionally, RLOO skips certain PPO steps, such as clip-
ping, GAE computation and doing multiple optimization
steps over the generation. DPO [50] does away with both
reward and critic models, using the generator token proba-
bilities to directly align to preferred responses. Finally, all
of these can be modified by parameter efficient fine-tuning
techniques [17], such as Lora [25], which can be used to train
only a low-rank approximation of the models.

2.2 Scale

The scale of RLFT presents another set of challenges on ef-
fectively mapping work to available resources. Large models
necessitate sharding across multiple accelerators in order to
both reduce memory pressure and parallelize computation.
We now discuss the different approaches used to scale LLM
training.

3D parallelism includes data parallelism (DP), pipeline par-
allelism (PP) and tensor parallelism (TP). DP [32] replicates
the model across multiple accelerators, with each accelera-
tor processing a different minibatch of data, synchronizing
gradients at the end of each iteration with collective commu-
nication. PP [27] has each accelerator processing a different
set of layers, and overlaps microbatches to reduce pipeline
stalls. TP [57] splits across model layers, with mny accelera-
tors processing the same layer, and synchronizing through
collective communication. While DP and PP are typically
applied over different hosts, TP is typically applied within a
single host [77], as the communication overhead is lower.
LLM-specific parallelisms include context parallelism (CP)
and sequence parallelism (SP), which optimize the full at-
tention computation. SP [39] is similar to DP but splits data
over the sequence dimension, allowing each accelerator to
compute local Qs, Ks and Vs, before circulating Ks and Vs
in a ring so that attention can be computed. CP [42] further
improves on SP by using a softmax decomposition [46] to im-
plement blockwise transformers [41], which enable compute
and communication overlap.
Other techniques employed to scale LLM training fur-
ther include mixed precision training [45] which quantizes
weights, Zero [51] which shards training states across DP
workers and swapping [52], which moves tensors to and
from host memory.

Importantly, unlike the traditional supervised paradigm in
which these techniques are applied to a single model, RLFT
involves multiple models with data dependencies between
them, necessitating careful coordination for performance.

Key Takeaway 1: The combinatorial space of RLFT
workloads and parallelism strategies is vast, preventing
effective manual optimization.

2.3 Dynamic Computation

A final challenge in RLFT is the dynamic nature of the com-
putation, which expresses itself in multiple ways. First, the
size of the prompts fetched from the dataset can vary. Second,
the size of the generated responses can vary, and is deter-
mined by when an end-of-sequence (EOS) token is generated.
Furthermore, during training, the average response length
of the model can change. For example, during the training of
DeepSeek-R1 [24], the average response length increases by
over an order of magnitude, leading to a significant increase
in memory usage and computation. Finally, attention itself
is dynamic, with its input shapes changing with the current
sequence length (Fig. 2). This dynamism makes it difficult to
statically optimize RLFT workloads (§3).

3 Issues with Existing Systems

In this section, we show that despite the fine-grained dataflow
graphs used by existing DL frameworks being powerful, they

92

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Silvestre and Pietzuch

0
20
40
60
80

Co
m

pi
le

 (s
)

0
5

10
15

Ite
ra

tio
n

(s
)

0
20
40
60
80

GP
U

Ut
il.

 (%
)

0
20
40
60
80

GP
U

M
em

. (
%

)

Static - Full Static - Sliding Dynamic - Full Dynamic - Sliding

Fig. 3: JAX/XLA Attention Microbenchmark. Existing graph
representations require static pre-allocation of buffers and mask-
ing, preventing memory-savings and causing redundant work for
sliding window attention, while dynamic execution is expensive.

are not flexible enough for RLFT algorithms (§3.1). We then
show how this forces RLFT systems to be imperative, and
thus lack flexibility and whole-graph optimization (§3.2).

3.1 Dataflow Graph Compilers

Graph-basedDL systems (e.g., TensorFlow [1] or JAX/XLA [19])
today are essentially compilers [37]. DL compilers first build
a representation of the computation as a graph, then lever-
age information statically available at compile-time (e.g.,
operation flops, tensor shapes, hardware characteristics) to
generate efficient specialized code [13], plan memory us-
age [19] and distribute computation across devices [77].
Since (un)supervised learning is static, repeating the same
forward and backward pass on static tensor shapes, DL com-
pilers have been designed and optimized for this use-case.
However, as we showed in §2.3, the assumption of static

computation is broken in RLFT. In order to model dynamic
computations in a single static dataflow graph, users are thus
forced into one of two undesirable choices. The first option,
available in JIT-compiled systems like JAX, is for users to
give up on whole-graph optimization, and instead recompile
the inner attention computation for each new shape. This
causes large compilation times and prevents whole-graph
optimization, but achieves low memory usage. Alternatively,
to enable whole-graph compilation, users must make the
computation static by setting all dynamic shapes to their
maximum possible sizes (which may be unknown, requiring
overestimation). Users must then pre-allocate buffers for that
size and apply padding and masking to the computation in
the correct locations. While this allows for whole-graph opti-
mization, it loses the fine-grained semantics of the dynamic
attention patterns, involves significant user effort, and leads
to wasted memory and computation.

This is visible in Fig. 3, where we benchmark autoregres-
sive decoding in JAX, using both full and sliding window
attention. The memory usage and iteration time of the static
version is the same for both full and windowed attention, as
the windowed attention is achieved by applying a mask. Fur-
thermore, the dynamic version achieves 4.1× and 7.5× lower
memory usage than the static version for full and windowed
attention, respectively. Discounting compilation time, while
the static version is faster for full attention, it is 3.2× slower

Tab. 1: A comparison of existing RLFT systems
DL Graph Multi Unif. Par.

System Eng. Based Algo. Eng. Space
NeMo-Aligner[55] PT ✗ ✓ ✓ 3D§

OpenRLHF[26] PT ✗ ~ ✗∗ 3D§

DS-Chat[71] PT ✗ ~ ✓ 3D§

TRL[65] PT ✗ ✓ ✗∗ 3D§

FlexRLHF[69] PT ✗ ✗ ✓ 3D§

Puzzle[36] PT ✗ ✗ ✗‡ 3D§

ReaLHF[44] PT ✓♦ ✓ ✓ 3D
RLHFuse[79] PT ✓♦ ✓ ✗† 3D
HybridFlow[56] PT ✓♦ ✓ ✗∗ 3D

∗ vLLM for generation. † In-house vLLM-like engine for generation.
‡ DeepSpeed-Inference for generation. § Fixed strategy. ♦ Coarse-grained.

for windowed attention than the dynamic version, due to
needing to compute all masked positions.

Key Takeaway 2: Existing graph-based DL systems
are not optimized for the dynamic computations that
emerge from sequence processing and RL workloads.

3.2 Existing RLFT Systems

In Tab. 1 we survey the key properties of existing RLFT sys-
tems work. Due to the need for dynamic shapes, most RLFT
systems today instead build on top of PyTorch (PT) [48],
which provides an imperative programming model. As a con-
sequence, no RLFT systems today optimize the computation
end-to-end, due to the lack of a graph representation. Instead,
it is common to leverage tracing-based JIT compilers, such as
torch.compile [5] to provide some optimization at the level
of individual models. Additionally, no work goes beyond 3D
parallelism, as they build on 3D parallel engines [51, 57].
Library Systems. TRL [65] and NeMo-Aligner [55] sup-
port a large number of algorithms without a representation,
through the implementation effort of large teams of con-
tributors. DS-Chat [71] and OpenRLHF [26] support con-
siderably fewer algorithms, which are simple variations of
RLHF. While DS-Chat collocates all models on all devices,
OpenRLHF seperates them completely, while NeMo-Aligner
collocates the generator and reference models on one set of
devices and the critic and reward on another. These systems
thus offer little flexibility, as the same distribution strategy
is used for all algorithm and model variations.
RLHF-coupled Distribution Optimization.Most systems
work focuses on high-level distribution strategies for RLHF,
which are highly coupled to the algorithm. DS-Chat [71]
first proposes using a hybrid engine to switch the genera-
tor from data parallelism for training to TP for generation.
OpenRLHF [26] first proposes utilizing vLLM to handle the
generation stage, as well as, offloading optimizer states for
larger batch sizes. FlexRLHF[69] notes that trainable models
(generator and critic) require much more memory, informing

93

Systems Opportunities for LLM RLFT EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

two model placement strategies: interleaved and disaggre-
gated. Interleaved improves inference times by leveraging
intra-node TP for reward and reference models, while the
disaggregated strategy improves training times for heteroge-
neous clusters by allowing uneven shardings. Puzzle [36] also
optimizes the communication in RLHF with a new sched-
ule for inference, while also using similar 3D parallelism
strategies for the generator model for both generation and
inference stages, minimizing the redistribution overhead.
What these projects have in common is that they all attempt
to manually design efficient distribution strategies for RLHF,
remaining highly coupled to it.
Coarse-grained Dataflow Graphs. A number of systems
build a coarse-grained dataflow graph of model invocations,
allowing them to plan high-level distributions strategies,
and more easily support new algorithms. RealHF uses profil-
ing and MCMC to search for fast end-to-end 3D parallelism
strategies for each model and task. RLHFuse [79] builds on
RealHF and shows that long-tailed generations delay the
start of the inference stage, and proposes resolving this by
dynamically migrating long-tail sample generation to a spe-
cific set of devices, allowing inference to start for finished
samples. They also propose using chimera [38] pipeline par-
allelism during inference between generator and critic, re-
ducing pipeline stalls. HybridFlow [56] instead exhaustively
searches the space and provides users more control over
low-level communication. However, coarse dataflow graphs
cannot support the holistic optimizations needed for the best
performance, as each node is still a black-box.

Key Takeaway 3: Existing RLFT systems are coupled
to RLHF, focus on 3D parallelism optimization and use
coarse-grained dataflows, limiting their flexibility.

3.3 Impedance Mismatch

Optimizing components in isolation prevents holistic opti-
mizations, introduces brittleness and can cause overheads.
For example, the FlashAttention [16] kernel, while fast, pre-
vents fusion with other kernels due to being implemented
in low-level CUDA or triton. On the other hand, different
parallelism strategies and sub-engines are often employed
for different stages of the computation. For example, RLFT
systems often use fast serving engines such as vLLM [33],
SGLang [78] or DeepSpeed-Inference [4] for the generation
stage, while the inference and training stages often use large-
scale training engines such as DeepSpeed [51] or Megatron-
LM [57]. While this specialization of the generation engine
speed-up generation, it still introduces overheads due to
the ad-hoc composition of the systems and optimizations
designed for serving unpredictable request load.
To demonstrate this, we experiment with TRL [65], the

most popular1 RLFT system found, applying the GRPO [54]
1Measured in GitHub stars.

Compute Memory0
20
40
60
80

100

Ut
iliz

at
io

n
(%

)

Dup.
Res.

Median Mean Peak

(a) GPU Utilization

vLLM
Sync.
0.34%

Backward
8.2%

Optimizer
 0.4%

Ref.
Log

Probs.
3.9%

Decode
73.4%

Other
7.7%

Linear 43% Attention
21.3%

Other
24.2%

Emb.
3.4%

Act
5.3%

Model FWD
53.8%

Scheduling
46.2%

Sched.
17.5%

Model
FWD

82.5%

Prefill
2.2%

KV Page
Indirection

2.8%

Dup.
Log

 Probs.
3.9%

(b) Execution Profile. Dashed boxes indicate overheads.

Fig. 4: GRPO on TRL using vLLM. The use of vLLM for genera-
tion causes significant overheads, limits flexible memory manage-
ment and underutilizes GPUs due to sequential execution.

algorithm to Qwen2.5-0.5B-Instruct [70], using the gsm8k
dataset [14], on a single A100 GPU (40GB), with VLLM for
generation. We observe that using vLLM impacts memory
management and introduces overheads, as shown in Fig. 4a.
First, it requires maintaining a separate copy of the model,
consuming 2.3% of the total GPU memory. It also requires
a memory reservation, which by default is 30% of the total
GPU memory, preventing flexible memory sharing through-
out execution. This prevents us from increasing the batch
size beyond 1, despite the GPU being underutilized during
generation, peaking only during training.
We analyze a profile of the execution (Fig. 4b), and find

that even in this single GPU setting, ∼40% of the total execu-
tion time is spent on different overheads caused by impedance
mismatch with vLLM. At the highest level, 3.9% of time is
spent recomputing logits which were just computed and dis-
carded by vLLM during generation, while a further 0.34% is
spent maintaining the vLLM model in sync with the training
engine. Looking deeper, we find that prefill and decoding
(which account for 75.6% of iteration time) spend 17.5% and
46.2% of time performing unnecessary scheduling work re-
spectively. This is because vLLM is designed for serving an
unpredictable request load, and thus applies techniques like
iteration-level scheduling and selective batching [72] (depicted
in Fig. 6a), which help dynamically balance service across re-
quests, but are unnecessary for RLFT, where the load pattern
is known ahead of time. Finally, within the useful decoding
work, a further 2.6% of time is spent on page-table indi-
rections caused by the vLLM’s paged attention [33], which
virtualizes the KV cache to reduce serving fragmentation.

94

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Silvestre and Pietzuch

Plan Search

Per-worker
Schedules

Optimizer Vectorize Insert
 Comm. Ops

IncrementalizeFuseSchedule/
Plan Mem.

NewOldPartition
Schedule

Cost
Model

0:T

O
C P

i+1
D

0:t

PCIe

GPU

GPU GPU

GPU

NIC

CPU

PCIe

GPU

GPU GPU

GPU

NIC

CPU

Cluster Topology

RLFT Graph

G
R

Fig. 5: TimeRL Compilation Pipeline for RLFT. By simply in-
serting communication operators, we can leverage the existing
passes to achieve pipelined communication and parallelism.

Key Takeaway 4: There are significant opportunities
for accelerating RLFT by co-designing the generation
and training engines.

4 A Vision for Whole-Graph Optimization
To support our vision of whole-graph RLFT optimization, we
seek a graph representation that is simultaneously expres-
sive enough to capture the variety of RLFT algorithms (§2.1)
in a single graph, as well as, fine-grained enough to enable
optimizations across components (§3.2). The representation
should be amenable to parallelization and distribution (§2.2),
to accommodate the large-scale nature of RLFT workloads.
The key challenge is that most existing DL compilers are de-
signed for static graphs, which are cannot effectively capture
the dynamic dependencies of RLFT (§2.3).
We are thus building a prototype RLFT system on top of

TimeRL [59], a DL compiler with support for the dynamic
dependencies of RLFT through a polyhedral dependence
graph (PDG) representation. In PDGs, similar to dataflow
graphs, nodes are low-level linear algebra operations, while
edges represent dependency. Unlike dataflow graphs how-
ever, each node executes many times and the graph can be
cyclic, allowing nodes to depend on past and future itera-
tions of themselves and other tensors, which is essential for
RLFT. To capture dynamic access patterns within the repre-
sentation, TimeRL adds symbolic expressions, e.g., 0 : 𝑡 where
𝑡 is a symbolic dimension, to each edge, which are evaluated
at runtime at each loop iteration, yielding a concrete depen-
dence with dynamic shape (e.g., at 𝑡 = 10, the dependence is
on 0, 1, . . . , 8, 9).

We also inherit the same declarative recurrent tensor API,
which allows RLFT algorithms and attention mechanisms
to be expressed naturally as recurrence equations such as
those in Eq. 1 and Eq. 2. Instead of hard-coding execution
strategies, we declaratively express the computation as a
set of recurrent relationships. This results in a single fine-
grained graph for the entire RLFT algorithm, which can be
optimized as a whole.
The advantage of this approach is that the existing com-

piler passes in TimeRL (Fig. 5) become directly applicable to
RLFT since they operate on the same fine-grained represen-
tation. For example, the vectorization pass will automatically
find parallelism across the batch and sequence dimensions,

while the scheduling pass can find parallelism between op-
erations such as generation and inference by analysing de-
pendencies (2). Since the whole computation is represented
in a single graph, the optimizer pass can eliminate redun-
dant work by finding duplicate nodes with the same inputs
(3). Finally, bespoke KV-cache management policies can be
derived by analyzing the symbolic access patterns (4). Addi-
tionally, through operator fusion, TimeRL can progressively
coarsen the graph to reduce the search space for optimization,
which we plan to leverage to reduce the complexity of our
optimization problem. However, TimeRL does not currently
support 3D parallelism and distribution, which is essential
for RLFT.

4.1 RLFT Distribution with PDGs

To model 3D parallelism and distribution, we extend TimeRL
with a few novel compiler passes, depicted in Fig. 5. We
first extend TimeRL’s primitive operation set with commu-
nication operators, including peer-to-peer (P2P) send and
receive, as well as, collective communication (CC) operators
(e.g., all-reduce), which allow us to model both inter- (PP)
and intra-operator (DP, TP) parallelism [77] respectively. At
compilation-time, we insert communication operators (both
P2P and CC) into the PDG at key points to represent different
distribution strategies.

The key challenge lies in choosing where to insert which
communication operators. Our approach decomposes this
problem into two steps. We first choose where to insert
P2P operators by balancing the flops and memory usage of
each subgraph created using integer linear programming.
In this way, we define balanced PP stages. Then, for each
subgraph created, we shard the computation over a 2D mesh
of devices and promote reductions, gathers, and scatters to
their CC equivalents (e.g., all-reduce, all-gather, all-to-all) if
they require acceleration. We use an analytical cost model
to guide these decisions, which we plan to refine in future
work. Finally, since TimeRL creates a single whole-program
schedule, we partition the resulting monolithic schedule into
per-worker schedules by filtering out operations that belong
to each stage. This is done iteratively, yielding the best found
strategy once a time budget is met.
The advantage of this approach is that it composes with

the existing TimeRL compiler passes, yielding advantages.
For example, the incrementalization pass of TimeRL will tile
both computation and communication operators, allowing
us to overlap tile 𝑘 of computation with tile 𝑘+1 of communi-
cation transparently (1). Beyond parallelism within a single
iteration, a whole-graph representation enables finding par-
allelism across iterations [21]. For example, it is possible to
overlap the generation at iteration 𝑖 + 1 with critic train-
ing at iteration 𝑖 , since the critic is not part of the critical
path. Finally, this also allows us to support SP transparently,
viewing it as simply intra-operator parallelism applied to the
sequence dimension.

95

Systems Opportunities for LLM RLFT EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

1
2
3
4

Gather Transf.
Block Scatter

(a) Generation with vLLM

1
2

3
4

Prefill Decoding

Response Padding

Prompt Current
Next

Transf.
Block

(b) Generation with Aligned Microbatches

Fig. 6: Generation Methods. Aligned microbatches avoid the
scheduling and data movement overhead of vLLM by aligning the
decoding timesteps.

Model DeepSeek-R1 GPT-4 Turbo Llama 3 Mean
Correlation 0.22 0.24 0.44 0.30

Tab. 2: Correlation of prompt and response length. Estimated
from 0.5M samples (∼180K each model).

4.2 Efficient Generation without vLLM

While serving engines such as vLLM accelerate generation,
we have shown that they also introduce serving-related over-
heads (§3.2), such as gathering and scattering inputs to create
a batch each step (Fig. 6a). To avoid this overhead, we pro-
pose emphaligned microbatches (Fig. 6b).
The key idea is to divide request minibatches into mi-

crobatches, grouping together prompts of similar lengths
and right-align them, so that generation always happens on
aligned contiguous memory. This means that to perform a
single generation step, we can simply slice the input, avoid-
ing the overhead of gathering and scattering. Furthermore,
since PP already requires microbatches to fill pipeline bub-
bles, we can combine the techniques transparently.
However, doing this necessitates padding on both the

prompt and response sides. On the prompt side, since we
group prompts by length, this padding is minimal. We also
hypothesize that it will be small on the response side due to
longer prompts leading to longer responses. To verify this
hypothesis, we analyzed 0.5M responses generated by popu-
lar LLMs, and found a mean weighted correlation of up to
0.44 (mean 0.3) between prompt and response length (Tab. 2).
Note that, in the case of DeepSeek-R1, this includes any rea-
soning traces generated by the model as part of the response.
This is a meaningful correlation, which indicates that the
padding amount will be significantly reduced over random
grouping. Prior work has also shown that response length
can be predicted from requests using a smaller language
model [29], and while more expensive, such approaches can
be used to further reduce padding.

5 Discussion and Open Questions

We now discuss open research directions we believe are im-
portant to the development of fine-grained DL compilation.
Efficient Fused Kernels. Manually implemented CUDA
kernels such as FlashAttention [16] have brought significant
speed-ups to LLMs through intelligent memory access pat-
terns through tiling. Our end-to-end compilation approach
should match or exceed these performance improvements.
How to derive these optimizations automatically [9] for dy-
namic computations remains an open question, but polyhe-
dral code-generation [7, 62] is a promising direction.
Searching & Pruning. The finer-grained the representation,
the larger the search space for optimizations. Since we aim to
simultaneously optimize for algebraic transformations, par-
allelism, scheduling and memory management, the search
space is vast. How to effectively search and prune this space
remains an open question, but prior work has leveraged prob-
lem decomposition [63] and hierarchical optimization [77],
Modelling Advanced Distribution Strategies. While 3D
parallelism is powerful, our design does not yet take into
account optimizations such as Zero [51], recomputation [66]
or CP [41], which are needed for truly large-scale training.
We wish to explore how to model these strategies with PDGs
in future work.
Sophisticated Algebraic Optimizations.We believe there
are opportunities for high-level algebraic optimizations that
cannot be expressed in typical dataflow systems due to lack
of semantic understanding of dynamic dependencies. Given
to the connections between sequence and signal processing,
we aim to explore the Fourier- and Z-transforms [18], diag-
onalization [23], chains of recurrences [6] and other signal
processing techniques for PDG optimization.

6 Conclusion

In this paper, we have shown that existing RLFT systems
suffer from diverse inefficiencies due to their coarse-grained
representation. However, we also showed that existing fine-
grained DL representations, such as JAX/XLA, are not well-
suited for RLFT due to their lack of support for dynamic
shapes. Thus, we proposed a design for a fine-grained dis-
tributed compiler based on TimeRL’s [59] PDG represen-
tation, allowing for holistic optimization of computation,
memory and communication. We believe fine-grained dy-
namic DL compilers are the key to unlocking the potential of
RLFT, and we hope that our work will inspire future research
in this direction.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. TensorFlow: a system for Large-Scale ma-
chine learning. In Symposium on Operating Systems Design and Imple-
mentation (OSDI).

96

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Silvestre and Pietzuch

[2] Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia
Kreutzer, Olivier Pietquin, Ahmet Üstün, and Sara Hooker. 2024. Back
to Basics: Revisiting Reinforce Style Optimization for Learning from
Human Feedback in LLMs. arXiv preprint arXiv:2402.14740 (2024).

[3] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy,
Federico Lebrón, and Sumit Sanghai. 2023. GQA: Training Generalized
Multi-Query TransformerModels fromMulti-Head Checkpoints. arXiv
preprint arXiv:2305.13245 (2023).

[4] Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan,
Cheng Li, Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia
Zhang, Jeff Rasley, et al. 2022. DeepSpeed-Inference: enabling efficient
inference of transformer models at unprecedented scale. In Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[5] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh
Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni
Burovski, et al. 2024. Pytorch 2: Faster machine learning through
dynamic python bytecode transformation and graph compilation. In
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[6] Olaf Bachmann, Paul S Wang, and Eugene V Zima. 1994. Chains
of recurrences—a method to expedite the evaluation of closed-form
functions. In International Symposium on Symbolic and Algebraic Com-
putation (ISSAC).

[7] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A polyhe-
dral compiler for expressing fast and portable code. In International
Symposium on Code Generation and Optimization (CGO).

[8] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen,
Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom
Henighan, et al. 2022. Training a Helpful and Harmless Assistant
with Reinforcement Learning from Human Feedback. arXiv preprint
arXiv:2204.05862 (2022).

[9] Paul Barham and Michael Isard. 2019. Machine learning systems are
stuck in a rut. InWorkshop on Hot Topics in Operating Systems (HotOS).

[10] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer:
The Long-Document Transformer. arXiv preprint arXiv:2004.05150
(2020).

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Languagemodels are few-shot learn-
ers. In Advances in Neural Information Processing Systems (NeurIPS).

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating Large LanguageModels
Trained on Code. arXiv preprint arXiv:2107.03374 (2021).

[13] Tianqi Chen, ThierryMoreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
et al. 2018. TVM: An automated End-to-End optimizing compiler
for deep learning. In Symposium on Operating Systems Design and
Implementation (OSDI).

[14] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Hee-
woo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton,
Reiichiro Nakano, et al. 2021. Training Verifiers to Solve Math Word
Problems. arXiv preprint arXiv:2110.14168 (2021).

[15] Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu,
Yizhou Wang, and Yaodong Yang. 2023. Safe RLHF: Safe Reinforce-
ment Learning from Human Feedback. arXiv preprint arXiv:2310.12773
(2023).

[16] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
2022. FlashAttention: Fast and memory-efficient exact attention with
io-awareness. In Advances in Neural Information Processing Systems
(NeurIPS).

[17] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang,
Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen,
et al. 2023. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence (Nat. Mach. Intell.)
(2023).

[18] Jacob Fein-Ashley. 2025. The FFT Strikes Back: An Efficient Alternative
to Self-Attention. arXiv preprint arXiv:2502.18394 (2025).

[19] Roy Frostig, Matthew James Johnson, and Chris Leary. 2018. Compiling
Machine Learning Programs via High-Level Tracing. In Conference on
Machine Learning and Systems (MLSys).

[20] Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Taco Co-
hen, and Gabriel Synnaeve. 2024. RLEF: Grounding Code LLMs in
Execution Feedback with Reinforcement Learning. arXiv preprint
arXiv:2410.02089 (2024).

[21] Gábor E Gévay, Tilmann Rabl, Sebastian Breß, Loránd Madai-Tahy,
Jorge-Arnulfo Quiané-Ruiz, and Volker Markl. 2021. Efficient control
flow in dataflow systems: When ease-of-use meets high performance.
In International Conference on Data Engineering (ICDE).

[22] Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad
Firoiu, Timo Ewalds, Maribeth Rauh, Laura Weidinger, Martin Chad-
wick, Phoebe Thacker, et al. 2022. Improving Alignment of Di-
alogue Agents via Targeted Human Judgements. arXiv preprint
arXiv:2209.14375 (2022).

[23] Albert Gu, Karan Goel, and Christopher Ré. 2021. Efficiently Mod-
eling Long Sequences with Structured State Spaces. arXiv preprint
arXiv:2111.00396 (2021).

[24] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang,
Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025.
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Rein-
forcement Learning. arXiv preprint arXiv:2501.12948 (2025).

[25] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. LoRA: Low-Rank
Adaptation of Large Language Models. arXiv preprint arXiv:2106.09685
(2021).

[26] Jian Hu, Xibin Wu, Weixun Wang, Dehao Zhang, Yu Cao, et al. 2024.
OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF
Framework. arXiv preprint arXiv:2405.11143 (2024).

[27] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. 2019. GPipe: Efficient training of giant neural networks
using pipeline parallelism. InAdvances in Neural Information Processing
Systems (NeurIPS).

[28] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch,
Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, et al. 2024. Mixtral of
experts. arXiv preprint arXiv:2401.04088 (2024).

[29] Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon Wei. 2023. S3:
Increasing GPU Utilization during Generative Inference for Higher
Throughput. In Advances in Neural Information Processing Systems
(NeurIPS).

[30] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François
Fleuret. 2020. Transformers are rnns: Fast autoregressive transformers
with linear attention. In International Conference on Machine Learning
(ICML).

[31] Diederik P Kingma. 2014. Adam: AMethod for Stochastic Optimization.
arXiv preprint arXiv:1412.6980 (2014).

[32] Alex Krizhevsky, Ilya Sutskever, andGeoffrey EHinton. 2012. Imagenet
classification with deep convolutional neural networks. In Advances
in Neural Information Processing Systems (NeurIPS).

[33] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
2023. Efficient memory management for large language model serving
with pagedattention. In Symposium on Operating Systems Principles
(SOSP).

97

Systems Opportunities for LLM RLFT EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

[34] Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Ren Lu, Thomas
Mesnard, Johan Ferret, Colton Bishop, Ethan Hall, Victor Carbune, and
Abhinav Rastogi. 2023. RLAIF: Scaling Reinforcement Learning from
Human Feedback with AI Feedback. arXiv preprint arXiv:2309.00267
(2023).

[35] Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard,
Johan Ferret, Kellie Ren Lu, Colton Bishop, Ethan Hall, Victor Carbune,
Abhinav Rastogi, et al. 2024. RLAIF vs. RLHF: Scaling Reinforcement
Learning from Human Feedback with AI Feedback. In International
Conference on Machine Learning (ICML).

[36] Kinman Lei, Yuyang Jin, Mingshu Zhai, Kezhao Huang, Haoxing Ye,
and Jidong Zhai. 2024. PUZZLE: Efficiently Aligning Large Language
Models through Light-Weight Context Switch. In 2024 USENIX Annual
Technical Conference (ATC). 127–140.

[37] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong
Yang, Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei Qian. 2020.
The deep learning compiler: A comprehensive survey. Transactions on
Parallel and Distributed Systems (TPDS) (2020).

[38] Shigang Li and Torsten Hoefler. 2021. Chimera: efficiently training
large-scale neural networks with bidirectional pipelines. In Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[39] Shenggui Li, Fuzhao Xue, Yongbin Li, and Yang You. 2021. Se-
quence Parallelism: Making 4D Parallelism Possible. arXiv preprint
arXiv:2105.13120 (2021).

[40] Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun,
and Zhi-Quan Luo. 2023. ReMax: A Simple, Effective, and Efficient
Reinforcement Learning Method for Aligning Large Language Models.
In Forty-first International Conference on Machine Learning.

[41] Hao Liu and Pieter Abbeel. 2024. Blockwise parallel transformers for
large context models. In Advances in Neural Information Processing
Systems (NeurIPS).

[42] Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023. Ring Attention with
Blockwise Transformers for Near-Infinite Context. arXiv preprint
arXiv:2310.01889 (2023).

[43] Yaxi Lu, Haolun Li, Xin Cong, Zhong Zhang, Yesai Wu, Yankai Lin,
Zhiyuan Liu, Fangming Liu, and Maosong Sun. 2025. Learning to
Generate Structured Output with Schema Reinforcement Learning.
arXiv preprint arXiv:2502.18878 (2025).

[44] ZhiyuMei, Wei Fu, Kaiwei Li, GuangjuWang, Huanchen Zhang, and Yi
Wu. 2024. ReaLHF: Optimized RLHF Training for Large LanguageMod-
els through Parameter Reallocation. arXiv preprint arXiv:2406.14088
(2024).

[45] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos,
Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii
Kuchaiev, Ganesh Venkatesh, et al. 2017. Mixed Precision Training.
arXiv preprint arXiv:1710.03740 (2017).

[46] Maxim Milakov and Natalia Gimelshein. 2018. Online Normalizer
Calculation for Softmax. arXiv preprint arXiv:1805.02867 (2018).

[47] Mistral AI Team. 2024. Un Ministral, des Ministraux. https://mistral.
ai/news/ministraux/ Mistral AI News.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Infor-
mation Processing Systems (NeurIPS).

[49] Ray Perrault and Jack Clark. 2024. Artificial Intelligence Index Re-
port 2024. Technical Report. Institute for Human-Centered Artificial
Intelligence, Stanford University. https://aiindex.stanford.edu/

[50] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning,
Stefano Ermon, and Chelsea Finn. 2024. Direct preference optimization:
Your language model is secretly a reward model. In Advances in Neural
Information Processing Systems (NeurIPS).

[51] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
2020. Zero: Memory optimizations toward training trillion parameter
models. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC).

[52] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and
Stephen W Keckler. 2016. vDNN: Virtualized deep neural networks
for scalable, memory-efficient neural network design. In International
Symposium on Microarchitecture (MICRO).

[53] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. 2017. Proximal Policy Optimization Algorithms. arXiv
preprint arXiv:1707.06347 (2017).

[54] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song,
Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. 2024.
DeepSeekMath: Pushing the Limits of Mathematical Reasoning in
Open Language Models. arXiv preprint arXiv:2402.03300 (2024).

[55] Gerald Shen, Zhilin Wang, Olivier Delalleau, Jiaqi Zeng, Yi Dong,
Daniel Egert, Shengyang Sun, Jimmy Zhang, Sahil Jain, Ali
Taghibakhshi, et al. 2024. NeMo-Aligner: Scalable Toolkit for Effi-
cient Model Alignment. arXiv preprint arXiv:2405.01481 (2024).

[56] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang,
Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. 2024. Hy-
bridFlow: A Flexible and Efficient RLHF Framework. arXiv preprint
arXiv:2409.19256 (2024).

[57] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2019. Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism.
arXiv preprint arXiv:1909.08053 (2019).

[58] David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. 2021.
Reward is enough. Journal of Artificial Intelligence (AIJ) (2021).

[59] Pedro F. Silvestre and Peter Pietzuch. 2025. TimeRL: Efficient Deep
Reinforcement Learning with Polyhedral Dependence Graphs. arXiv
preprint arXiv:2501.05408 (2025).

[60] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa,
Cassidy Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mes-
nard, Bobak Shahriari, Alexandre Ramé, et al. 2024. Gemma 2: Im-
proving Open Language Models at a Practical Size. arXiv preprint
arXiv:2408.00118 (2024).

[61] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng
Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al.
2025. Kimi K1.5: Scaling Reinforcement Learning with LLMs. arXiv
preprint arXiv:2501.12599 (2025).

[62] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. 2019. Triton: an
intermediate language and compiler for tiled neural network computa-
tions. In InternationalWorkshop onMachine Learning and Programming
Languages (MAPL).

[63] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos
Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati, Pat
McCormick, Jamaludin Mohd-Yusof, et al. 2022. Unity: Accelerating
DNN training through joint optimization of algebraic transformations
and parallelization. In Symposium on Operating Systems Design and
Implementation (OSDI).

[64] A Vaswani. 2017. Attention is all you need. In Advances in Neural
Information Processing Systems (NeurIPS).

[65] Leandro vonWerra, Younes Belkada, Lewis Tunstall, Edward Beeching,
Tristan Thrush, Nathan Lambert, Shengyi Huang, Kashif Rasul, and
Quentin Gallouédec. 2020. TRL: Transformer Reinforcement Learning.
https://github.com/huggingface/trl.

[66] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. 2018. SuperNeurons:
Dynamic GPU Memory Management for Training Deep Neural Net-
works. In Symposium on Parallelism in Algorithms and Architectures
(SPAA).

98

https://mistral.ai/news/ministraux/
https://mistral.ai/news/ministraux/
https://aiindex.stanford.edu/
https://github.com/huggingface/trl

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Silvestre and Pietzuch

[67] Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix Yu, Cho-Jui Hsieh,
Inderjit S Dhillon, and Sanjiv Kumar. 2022. Two-Stage LLM Fine-
Tuning with Less Specialization and More Generalization. arXiv
preprint arXiv:2211.00635 (2022).

[68] Ronald J Williams. 1992. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine learning
(Mach. Learn.) (1992).

[69] Youshao Xiao, Zhenglei Zhou, Fagui Mao, Weichang Wu, Shangchun
Zhao, Lin Ju, Lei Liang, Xiaolu Zhang, and Jun Zhou. 2023. AnAdaptive
Placement and Parallelism Framework for Accelerating RLHF Training.
arXiv preprint arXiv:2312.11819 (2023).

[70] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al.
2024. Qwen2.5 Technical Report. arXiv preprint arXiv:2412.15115
(2024).

[71] Zhewei Yao, Reza Yazdani Aminabadi, Olatunji Ruwase, Samyam Rajb-
handari, Xiaoxia Wu, Ammar Ahmad Awan, Jeff Rasley, Minjia Zhang,
Conglong Li, Connor Holmes, et al. 2023. DeepSpeed-Chat: Easy, fast
and affordable rlhf training of chatgpt-like models at all scales. arXiv
preprint arXiv:2308.01320 (2023).

[72] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and
Byung-Gon Chun. 2022. Orca: A distributed serving system for
Transformer-Based generative models. In Symposium on Operating
Systems Design and Implementation (OSDI).

[73] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua
Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula,
Qifan Wang, Li Yang, et al. 2020. Big bird: Transformers for longer
sequences. In Advances in Neural Information Processing Systems

(NeurIPS).
[74] Qingru Zhang, Dhananjay Ram, Cole Hawkins, Sheng Zha, and

Tuo Zhao. 2023. Efficient Long-Range Transformers: You Need to
Attend More, but Not Necessarily at Every Layer. arXiv preprint
arXiv:2310.12442 (2023).

[75] Zheng Zhang, Chen Zheng, Da Tang, Ke Sun, Yukun Ma, Yingtong Bu,
Xun Zhou, and Liang Zhao. 2023. Balancing Specialized and General
Skills in LLMs: The Impact of Modern Tuning and Data Strategy. arXiv
preprint arXiv:2310.04945 (2023).

[76] Chen Zheng, Ke Sun, Hang Wu, Chenguang Xi, and Xun Zhou. 2024.
Balancing Enhancement, Harmlessness, and General Capabilities: En-
hancing Conversational LLMs with Direct RLHF. arXiv preprint
arXiv:2403.02513 (2024).

[77] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P Xing, et al. 2022. Alpa: Automating inter-and Intra-Operator
parallelism for distributed deep learning. In Symposium on Operating
Systems Design and Implementation (OSDI).

[78] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff
Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica,
Joseph E Gonzalez, et al. 2024. SGLang: Efficient Execution of Struc-
tured Language Model Programs. arXiv preprint arXiv:2312.07104
(2024).

[79] Yinmin Zhong, Zili Zhang, Bingyang Wu, Shengyu Liu, Yukun Chen,
Changyi Wan, Hanpeng Hu, Lei Xia, Ranchen Ming, Yibo Zhu, et al.
2024. RLHFuse: Efficient RLHF Training for Large Language Models
with Inter-and Intra-Stage Fusion. arXiv preprint arXiv:2409.13221
(2024).

99

	Abstract
	1 Introduction
	2 Challenges in RLFT
	2.1 Algorithm Variety
	2.2 Scale
	2.3 Dynamic Computation

	3 Issues with Existing Systems
	3.1 Dataflow Graph Compilers
	3.2 Existing RLFT Systems
	3.3 Impedance Mismatch

	4 A Vision for Whole-Graph Optimization
	4.1 RLFT Distribution with PDGs
	4.2 Efficient Generation without vLLM

	5 Discussion and Open Questions
	6 Conclusion
	References

