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ABSTRACT
Efficient neural networks (NNs) leveraging lookup tables (LUTs)
have demonstrated significant potential for emerging AI appli-
cations, particularly when deployed on field-programmable gate
arrays (FPGAs) for edge computing. These architectures promise
ultra-low latency and reduced resource utilization, broadening neu-
ral network adoption in fields such as particle physics. However,
existing LUT-based designs suffer from accuracy degradation due
to the large fan-in required by neurons being limited by the expo-
nential scaling of LUT resources with input width. In practice, in
prior work this tension has resulted in the reliance on extremely
sparse models.

We present NeuraLUT-Assemble, a novel framework that ad-
dresses these limitations by combining mixed-precision techniques
with the assembly of larger neurons from smaller units, thereby
increasing connectivity while keeping the number of inputs of any
given LUTmanageable. Additionally, we introduce skip-connections
across entire LUT structures to improve gradient flow. NeuraLUT-
Assemble closes the accuracy gap between LUT-based methods and
(fully-connected) MLP-based models, achieving competitive accu-
racy on tasks such as network intrusion detection, digit classifica-
tion, and jet classification, demonstrating on average 6× reduction
in inference latency and 22× reduction in LUT utilization compared
to recent prior approaches.

CCS CONCEPTS
• Hardware → Reconfigurable logic and FPGAs; Hardware-
software codesign; • Computing methodologies→ Neural net-
works.
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1 INTRODUCTION
Ultra-low latency neural network inference has become instrumen-
tal in advancing fields such as particle physics, network security,
and autonomous vehicles. In particle physics, machine learning
(ML) models are essential for handling the immense data volumes
generated by detectors. For instance, in the latest upgrade to the
CMS trigger system at CERN’s Large Hadron Collider, the system
processes information from six consecutive beam crossings, every
25 ns. The system must achieve nanosecond-level latency to be
capable of accepting new data inputs continuously. Such real-time
capabilities enable efficient event selection, by enabling the collec-
tion of meaningful events that could otherwise be lost. In network
security, ML-driven intrusion detection systems swiftly identify
threats and anomalies, safeguarding critical infrastructure by de-
livering near-instant insights. Autonomous vehicles also rely on
ML to interpret sensor data and make split-second navigation and
safety decisions, particularly in complex or high-speed scenarios.
However, due to the resource-constrained environments and strict
latency requirements in these fields, deployed deep neural networks
(DNNs) often fall short of the state-of-the-art accuracy in ML.

FPGAs, with their highly customizable architecture, serve as a
core platform for these applications, enabling optimized computa-
tion to meet stringent performance KPIs. Their reconfigurability
supports rapid design iteration, making them ideal for applications
that demand frequent model updates. Moreover, FPGAs are highly
parallelizable, significantly reducing processing time.

Recent research in the field has focused on hardware-software
co-design. Beyond designing efficient hardware, it is also important
to adapt software for deployment efficiency. A growing area of
research explores model architectures that map efficiently to hard-
ware. For example, LUT-based approaches like NeuraLUT [3], Poly-
LUT [2], LogicNets [17], NullaNet [16], PolyLUT-Add [15], Amigo-
LUT [20]. Other recent works have adopted decision tree-based
approaches like TreeLUT [14], or weightless neural networks [5].

Following [2], we refer to lookup tables of arbitrary size as
Logical-LUTs (L-LUTs), highlighting their ability to exceed the
capacity of the Physical-LUTs (P-LUTs) on the FPGA. When an L-
LUT requires more inputs than a P-LUT can handle, logic synthesis
tools map it as a circuit of multiple interconnected P-LUTs.

NeuraLUT, PolyLUT, LogicNets, and NullaNet encapsulate the
entire computation of a neuron within a single L-LUT, creating a
network of L-LUTs with no exposed datapaths. These prior works
offer distinct trade-offs in model complexity and expressiveness.

However, for these approaches to be feasible, the lookup table
size is constrained, which can limit the accuracy of these neural net-
works. PolyLUT-Add [15] takes a first step at trying to improve the
connectivity of these networks by summing the results of multiple
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L-LUTs across the network. However, this approach utilizes LUTs
for the implementation of the sum which are also restricted by their
fan-in. AmigoLUT [20] creates ensembles of smaller LUT-based
NNs, including NeuraLUT, to tackle the scalability.

In this work, NeuraLUT-Assemble, we take a distinct approach
to combat the challenge of the inherent limitation on the number
of L-LUT inputs. We introduce a fully-parametrizable framework
that assembles multiple NeuraLUT neurons as tree structures with
larger fan-in, directly addressing the exponential scaling challenge.
This customizable tool allows users to increase connectivity without
fan-in restrictions by providing full control over the tree structure.
The grouping of connections at the input of the tree structure is
guided by the hardware-aware pruning strategy first introduced in
the extended arxiv PolyLUT paper [4].

To enhance training stability, we propose a resource-efficient
method that integrates skip-connections within the L-LUTs to en-
sure effective gradient flow in the individual L-LUTs or across the
assembled tree structure.

In summary, the novel contributions are as follows:
• We introduce NeuraLUT-Assemble, an open-source1 toolflow
that leverages the FPGA architecture by embedding dense,
full-precision sub-networks within tree-structures of synthe-
sizable Boolean lookup tables.

• We develop a fully-parametrizable framework to increase
connectivity by training larger fan-in tree structures of smaller
L-LUT units, where connection grouping is determined post-
initial training.

• We develop a resource-efficient approach that embeds skip-
connections within L-LUTs, promoting smooth gradient flow
at training throughout the entire assembled tree structure.

• We assess NeuraLUT-Assemble on three standard tasks used
in the low-latency DNN research community: digit classifi-
cation, jet substructure classification, and network intrusion
detection. Our results show that compared to NeuraLUT,
our method achieves the lowest area-delay product with up
to 62× reduction on MNIST combined with a higher test
accuracy, and up to 26× reduction on jet substructure for the
same test accuracy.

2 BACKGROUND
2.1 DSP-based architectures
In the area of ultra-low latency, hls4ml [12] is a notable open-
source framework created to enable inference on FPGAs, with a
focus on low-latency applications. Duarte et al. [12] employ hls4ml
to generate both fully-unrolled and rolled network architectures
that target latency reduction. These designs, however, utilize high-
precision networks, which result in considerable Digital Signal
Processing (DSP) usage. Fahim et al. [8] further optimize hls4ml
by incorporating techniques such as quantization-aware pruning.

2.2 XNOR-based architectures
Ngadiuba et al. [13] use the hls4ml framework to map binary and
ternary neural networks onto FPGAs. Similarly, FINN [21] is an
open-source framework that was initially tailored for deploying

1https://github.com/MartaAndronic/NeuraLUT

efficient binary neural networks (BNNs) on FPGAs. To improve
hardware performance, FINN replaces traditional operations with
hardware-friendly alternatives, such as popcount operators instead
of additions, thresholding in place of the batch normalization and
activation functions, and OR gates for max-pooling.

2.3 Decision tree-based architectures
Decision tree-based approaches, like TreeLUT [14] and POLYBiNN [1],
are practical methods for efficient machine learning inference on
hardware platforms like FPGAs. These methods use the structure
of decision trees to break down problems into smaller, manageable
decisions, which work well in hardware because of their parallel
and low-latency nature.

2.4 Differentiable LUTs
2.4.1 LUTNet. LUTNet [18, 19], introduced byWang et al., replaces
BNN XNOR operations with learned K-input Boolean functions
mapped directly onto FPGA LUTs. This approach leverages the
inherent flexibility of LUTs to implement complex Boolean func-
tions, enhancing logic density and allowing for significant network
pruning without accuracy degradation.

2.4.2 Differentiable Weightless Neural Networks. A different ap-
proach, Differentiable Weightless Neural Networks (DWNs) [5],
utilizes an extended finite difference method to approximate gradi-
ents for training networks composed of interconnected LUTs. Ad-
ditionally, in DWNs a distributive thermometer encoding scheme
is employed for input representation to convert continuous input
features into binary vectors. However, this thermometer encod-
ing assigns distinct floating-point thresholds to each feature, lead-
ing to potentially large overhead in converting into thermometer-
encoding.

2.5 LUT-based traditional NNs
What distinguishes this category is that, while designed for LUT-
based netlist inference, the training process relies on traditional
neural network models, which are later fully absorbed into LUT
functions by complete enumeration. NullaNet [16] and LogicNets
[17] were among the first to map entire neurons onto multi-input,
multi-output Boolean functions. NullaNet minimizes these func-
tions’ footprint using Boolean logic minimization strategies and
selectively determining output values for specific input combina-
tions while treating the rest as don’t-care conditions to conserve
resources. In contrast, LogicNets trains neural networks that were
a priori designed to be extremely sparse to overcome NullaNet’s
potential accuracy loss after their don’t-care optimization step.

PolyLUT[2] LogicNets further by encoding the entire neuron’s
function within an L-LUT but uniquely expands each neuron’s
feature vector to include all monomials up to a user-defined degree
𝐷 . This added complexity within each layer allows PolyLUT to
reach target accuracies with fewer layers, enhancing efficiency.

NeuraLUT [3] explores an alternative universal function approx-
imator that maintains training simplicity without requiring modifi-
cations to existing training frameworks: the multilayer perceptron
(MLP) [7, 11]. By embedding MLPs within LUTs, NeuraLUT max-
imizes the neural network density within each individual L-LUT.
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Figure 1: View of a NeuraLUT L-LUT on the left and a
NeuraLUT-Assemble L-LUT tree on the right. • represents an
affine transformation, whereas 𝑓 is the activation function.

owever, this approach can unveil highly complex interaction be-
tween a limited number of features that is controlled by the L-LUT
fan-in.

PolyLUT-Add [15] represents an initial effort to enhance network
connectivity by aggregating the outputs of multiple L-LUTs across
the network. While this approach effectively improves feature ab-
straction, it relies on LUTs to perform the summation. This creates
a trade-off, as the fan-in limitations of these LUTs can constrain
scalability.

AmigoLUT [20] creates ensembles of multiple small models of
different LUT-based NNs, such as NeuraLUT, and computes the
average of the outputs of all members. This method has proven to
be effective at increasing the accuracy of very weak models.

2.6 Hardware-aware structured pruning
In LUT-based neural networks, a primary challenge lies inmanaging
the exponential increase in LUT size with a growing number of
inputs. Conventional approaches address this by imposing fixed
random sparsity patterns a priori[2, 3, 17], but these methods are
sensitive to initial seed selection, often resulting in performance
inconsistencies.

PolyLUT [4] introduced a hardware-aware structured pruning
strategy to overcome these limitations, promoting a tailored spar-
sity pattern. Rather than relying on predefined sparsity, PolyLUT
defines a custom group regularizer designed to guide neuron con-
nections according to hardware constraints.

The proposed method follows a sequential process: initially, the
network undergoes dense training with a custom hardware-aware
regularizer, establishing a foundation conducive to effective prun-
ing. Following this dense training, a structured pruning stage is
applied, and the resulting sparse network is subsequently retrained
to restore any potential accuracy loss.

3 METHODOLOGY
Our work introduces a novel approach to designing LUT-based neu-
ral networks by leveraging a hardware-aware design to overcome
the fan-in limitations of traditional LUT-based neural networks. We
have designed a way to assemble tree structures of multiple L-LUTs

and translate this structure onto the training framework to achieve
higher connectivity. Figure 1 provides a small-scale example that
illustrates our strategy. Instead of training a model with 8-input
L-LUTs, we can train a fixed tree structure by combining 4-input
L-LUTs with a 2-input L-LUT, thereby dramatically reducing the
L-LUT cost. Since these two designs train fundamentally differ-
ent functions, we train the tree structure from scratch rather than
mapping a higher fan-in model onto it.

Training deep NNs often encounters difficulties due to the van-
ishing gradient problem [6] [9], where gradients can shrink sub-
stantially as they backpropagate through layers. While this issue
is generally less prominent in prior NNs designed for ultra-low
latency [2, 3, 17], which tend to have limited depth, it becomes
more relevant in the NeuraLUT-Assemble framework. In NeuraLUT-
Assemble, the tree-structures add additional depth to the neural
network and it tends to be relatively deep compared to the number
of inputs per tree, making training more difficult. To address this,
we employ residual connections, which add outputs from certain
layers to the activations from earlier layers, helping to preserve
gradient flow [10].

A key advantage of our approach is that these residual connec-
tions traverse the entire assembled tree structure and are entirely
hidden within the L-LUT synthesizable Boolean function. As a re-
sult, they do not cause an additional implementation cost or reduce
regularity at inference. In NeuraLUT these connections were con-
strained to the L-LUT borders. As illustrated on the left side of
Figure 1, a neuron without an activation function bypasses two
fully connected layers, adding its output just before the activation
function in the third layer. On the right side, in our strategy, all acti-
vation functions are removed except in the final tree layer, allowing
a skip path with no activation function from the tree structure’s
input to its output, highlighted in dotted red.

3.1 Assembling strategies
Our fully customizable framework allows users to construct tree
structures tailored to their needs, balancing the trade-off between
the number of L-LUTs and their size. Figure 2 illustrates two possible
configurations for a tree with 16 inputs. In the first configuration,
each L-LUT has 4 inputs, and a number of entries in the LUT of 24𝛽 ,
where 𝛽 is the number of activation bits. In the second configuration,
the number of L-LUTs increases threefold, but the size of each L-
LUT decreases to the square root of its previous value, i.e. to 22𝛽 ,
as the number of inputs per L-LUT is halved. NNs trained using
NeuraLUT-Assemble resemble the structure shown in Figure 4.

This exponential reduction in size has significant implications
for hardware implementation. This strategy enhances scalability,
reducing the size of L-LUTs directly. However, the trade-off lies
in the increased number of L-LUTs required to construct the tree,
which can lead to higher interconnect complexity and potentially
longer critical paths in the hardware. Therefore pipelining requires
more attention here than in previous LUT-based NN work and we
experiment with different strategies in Section 4.

There is also an inherent trade-off in training between the ex-
pressivity of the model and its hardware cost. Larger input L-LUTs
have higher expressivity because they can capture more complex
inter-dependencies among the input features. However, as the tree
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Figure 2: Example of two different NeuraLUT-Assemble configurations for a 16-input tree. The red connections are decided
upon an initial stage of dense training, whereas the black connections always stay fixed.

Table 1: Overview of user-defined NN architecture parameters, emphasizing the flexibility of our toolflow. The last three
parameters are specific to the NN inside the L-LUT structure.

Parameter Notation Description

Layer sizes 𝑤𝑙 Number of L-LUTs units per layer.
Assemble layer 𝑎𝑙 Boolean array to indicate assemble layers, which have fixed sparsity.

Fan-ins 𝐹 The fan-ins are individually defined for the input, output, and inner-tree layers.
Bit-widths 𝛽 The bit-widths are individually defined for the input, output, and inner-tree layers.

Depth of L-LUT NN 𝐿 Depth parameter for the NN hidden inside the L-LUTs.
Width of L-LUT NN 𝑁 Width parameter for the NN hidden inside the L-LUTs.
Skip-connection step 𝑆 Skip-connection step for the NN hidden inside the L-LUTs.

NN architecure
parameters

Training
parameters

Dataset

NN module

PyTorch

NeuraLUT-Assemble 
NN generation

Checkpoint

PyTorch

Quantization-aware training (QAT)
with structured pruning and retraining

RTL files

PyTorch

Sub-network to 
L-LUT conversion

Vivado

Synthesis and
Place & Route

Bitstream

Target FPGA
Target clock

Pipelining strategy

Figure 3: Visualization of NeuraLUT-Assemble’s toolflow.

structure becomes deeper, the individual functions implemented by

the L-LUTs at each layer become simpler. However, this simplicity
makes the model easier and faster to train. To balance these com-
peting factors, we allow the input connections to be decided upon
an initial stage of training. This approach enables the framework to
prioritize and preserve the most critical inter-dependencies among
inputs. By doing so, the model retains a high degree of expressiv-
ity while mitigating the challenges of training and the hardware
cost associated with larger L-LUTs. We investigate this tradeoff
empirically in Section 4.

3.2 Toolflow
NeuraLUT-Assemble builds upon the NeuraLUT toolflow [3], en-
abling seamless DNN training, conversion into L-LUTs, RTL file
generation, and hardware compilation and verification. The train-
ing implementation has been modified to accommodate the unique
hidden NNs and the tree-based structure of NeuraLUT-Assemble.
A high-level overview of the toolflow stages is presented in Fig. 3.

3.2.1 Quantization-aware training (QAT). The training code is writ-
ten in PyTorch. Initially, the user needs to specify the learning
parameters (e.g., learning rate) and the topology parameters, as
detailed in Table 1. The hyperparameters 𝐿, 𝑁 , and 𝑆 define the
structure of the sub-networks within the L-LUTs as detailed in
Table 1. The rest of the hyperparameters, such as𝑤𝑙 , 𝑎𝑙 , 𝐹 , and 𝛽

dictate the tree-level topology.
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Figure 4: High-level view of toy 6-layer NeuraLUT-Assemble network.

Table 2: Reference floating-point (FP), fully-connected (FC) test accuracy, our test accuracy and architecture parameters for
different models used for evaluation in Table 3. Despite the sparsity and low precision, NeuraLUT-Assemble achieves accuracy
comparable to that of a dense floating-point model.

Dataset Accuracy (%) Parameters

FP FC Ours 𝑤𝑙 𝑎𝑙 𝐹 𝛽 𝐿 𝑁 𝑆

MNIST(+aug/-aug)
98.7% 98.6% [2160,360,2160,360,60,10] [0,1,0,1,1,1] [6,6,6,6,6,6] [1,1,1,1,1,6] 2 16 2
98.4% 97.9% [2160,360,2160,360,60,10] [0,1,0,1,1,1] [6,6,6,6,6,6] [1,1,1,1,1,6] 2 16 2

JSC CERNBox 76.0% 75.0% [320,160,80,40,20,10,5] [0,1,1,1,1,1,1] [1,2,2,2,2,2,2] [8,4,4,4,4,4,8] 2 64 2

JSC OpenML 77.0% 76.0% [320,160,80,40,20,10,5] [0,1,1,1,1,1,1] [1,2,2,2,2,2,2] [6,3,3,3,3,3,8] 2 64 2

NID 92.5% 93.0% [60,20,9,3,1] [0,1,0,1,1] [6,3,3,3,3] [1,2,2,2,2,2] 2 16 2

3.2.2 Sub-network to L-LUT conversion. After training, each sub-
network within the tree is transformed into an L-LUT. This con-
version is automatically performed in PyTorch by generating all
possible input combinations based on the specified bit-widths and
evaluating the corresponding output values through inference. The
number of entries in each L-LUT is 2𝛽𝐹 , similar to LogicNets, but
with differences in the specific lookup table content derived from
the sub-network functions.

3.2.3 RTL file generation. Using the PyTorch framework, the trained
network is automatically converted into Verilog RTL, where each
L-LUT is implemented as a read-only memory (ROM) block.

3.2.4 Synthesis and Place & Route. To synthesize and compile the
generated Verilog RTL files, we use Vivado 2020.1, targeting the
xcvu9p-flgb2104-2-i FPGA. This enables direct comparison with
[3, 4, 15, 17].

4 EVALUATION
4.1 Comparison with prior work
To ensure a fair comparison with prior works, we selected parame-
ters and architectures that either match or exceed the test accuracy
of other ultra-low-latency approaches. We evaluated metrics such
as area, latency, maximum frequency, and the area-delay product.
Table 2 summarizes the parameters used, along with a reference
for the test accuracy achieved using the same-sized network with
floating-point precision and fully-connected layers. Notably, none
of our models deviate by more than 1 percentage point in test
accuracy compared to these references.

Table 3 provides a comprehensive comparison, showing that
NeuraLUT-Assemble outperforms all other prior works in terms of
the area-delay product.

For MNIST, we evaluated two models: one without data augmen-
tation to align with prior works, and another incorporating data
augmentation. Compared to NeuraLUT, our method achieves a 62×
reduction in the area-delay product while improving test accuracy
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Table 3: Evaluation of NeuraLUT against other ultra-low latency neural networks, with results from cited conference papers.
Our results are taken after running Out-of-Context synthesis and place & route, matching with prior work.

Dataset Model Accuracy LUT FF DSP BRAM Fmax Latency Area×Delay
(%) (MHz) (ns) (LUT×ns)

MNIST

NeuraLUT-Assemble+aug 98.6% 5037 713 0 0 849 2.2 1.11 × 104

NeuraLUT-Assemble 97.9% 5070 725 0 0 863 2.1 1.06 × 104

DWN [5] 97.8% 2092 1757 0 0 873 9.2 1.92 × 104

TreeLUT [14] 97% 4478 597 0 0 791 2.5 1.12 × 104

PolyLUT-Add [15] 96% 14810 2609 0 0 625 10 1.48 × 105

AmigoLUT-NeuraLUT [20] 95.5% 16081 13292 0 0 925 7.6 1.22 × 105

NeuraLUT [3] 96% 54798 3757 0 0 431 12 6.58 × 105

PolyLUT [4] 97.5% 75131 4668 0 0 353 17 1.38 × 106

FINN [21] 96% 91131 — 0 5 200 310 2.82 × 107

hls4ml (Ngadiuba et al.) [13] 95% 260092 165513 0 345 200 190 4.94 × 107

JSC CERNBox

NeuraLUT-Assemble 75.0% 8539 1332 0 0 352 5.7 4.87 × 104

AmigoLUT-NeuraLUT [20] 74.4% 42742 4717 0 0 520 9.6 4.10 × 105

PolyLUT-Add [15] 75% 36484 1209 0 0 315 16 5.84 × 105

NeuraLUT [3] 75% 92357 4885 0 0 368 14 1.29 × 106

PolyLUT [4] 75.1% 246071 12384 0 0 203 25 6.15 × 106

LogicNets [17] 72% 37931 810 0 0 427 13 4.93 × 105

JSC OpenML

NeuraLUT-Assemble 76.0% 1780 540 0 0 941 2.1 3.92 × 103

TreeLUT [14] 76% 2234 347 0 0 735 2.7 6.03 × 103

DWN [5] 76.3% 6302 4128 0 0 695 14.4 9.07 × 104

hls4ml (Fahim et al.) [8] 76.2% 63251 4394 38 0 200 45 2.85 × 106

NID

NeuraLUT-Assemble 93.0% 91 24 0 0 1471 1.4 1.27 × 102

TreeLUT [14] 93% 345 33 0 0 681 1.5 5.17 × 102

PolyLUT-Add [15] 92% 1649 830 0 0 620 8 1.32 × 104

PolyLUT [4] 92.2% 3165 774 0 0 580 9 2.85 × 104

LogicNets [17] 91% 15949 1274 0 0 471 13 2.07 × 105

by 2 percentage points, underscoring the efficiency of our approach.
Notably, while NeuraLUT relied on 12-input LUTs to reach this
level of accuracy, NeuraLUT-Assemble achieves even higher ac-
curacy with only 6-input LUTs, thus the exponential area reduc-
tion. Furthermore, compared to LUT-based approaches aimed at
improving connectivity, such as PolyLUT-Add [15] and AmigoLUT-
NeuraLUT [20], we observe 14× and 11.5× reductions in the area-
delay product, respectively, while also achieving approximately
2 percentage points higher test accuracy. When compared to the
decision-based TreeLUT approach [14], NeuraLUT-Assemble of-
fers comparable hardware performance and delivers 1 percentage
point higher accuracy. Similarly, against weightless neural net-
works, NeuraLUT-Assemble achieves a 1.8× improvement in the
area-delay product for comparable accuracy.

For the JSC dataset from CERNBox, we focused on comparisons
with other LUT-based approaches, as they are the only prior works
utilizing this data source. Here, NeuraLUT-Assemble demonstrates a
26× reduction in the area-delay product while maintaining the same

test accuracy as NeuraLUT. On the OpenML datasource, NeuraLUT-
Assemble achieves at least a 1.5× reduction in the area-delay prod-
uct compared to prior works.

On the network intrusion dataset (NID), compared to TreeLUT,
NeuraLUT-Assemble reduces the area-delay product by 4× for the
same accuracy. Compared to PolyLUT-Add, NeuraLUT-Assemble
not only reduces the area-delay product by 104×, but also increases
test accuracy by 2 percentage points.

5 CONCLUSION AND FUTUREWORK
NeuraLUT-Assemble advances LUT-based neural networks by ad-
dressing fan-in limitations and resource constraints through a
flexible, hardware-aware framework. Our results demonstrate sig-
nificant reductions in the area-delay product while maintaining
competitive accuracy across benchmarks, outperforming prior ap-
proaches in efficiency and scalability.
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