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Abstract

Federated learning (FL) is amachine learning approachwhere
nodes collaboratively train a global model. As more nodes
participate in a round of FL, the effectiveness of individual
model updates by nodes also diminishes. In this study, we
increase the effectiveness of client updates by dividing the
network into smaller partitions, or cohorts. We introduce
Cohort-Parallel Federated Learning (CPFL): a novel learning
approach where each cohort independently trains a global
model using FL, until convergence, and the produced models
by each cohort are then unified using knowledge distillation.
The insight behind CPFL is that smaller, isolated networks
converge quicker than in a one-network setting where all
nodes participate. Through exhaustive experiments involv-
ing realistic traces and non-IID data distributions on the
CIFAR-10 and FEMNIST image classification tasks, we in-
vestigate the balance between the number of cohorts, model
accuracy, training time, and compute resources. Compared
to traditional FL, CPFL with four cohorts, non-IID data dis-
tribution, and CIFAR-10 yields a 1.9× reduction in train time
and a 1.3× reduction in resource usage, with a minimal drop
in test accuracy.

CCSConcepts: •Computingmethodologies→Distributed

algorithms.
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1 Introduction

Federated learning (FL) allows for the collaborative training
of a machine learning model across a distributed network
of training nodes, or clients, without ever moving training
data [34]. A central server orchestrates the process by se-
lecting a subset of clients, referred to as a cohort [9], and
sends them the most recent version of the global model. Sub-
sequently, clients in this cohort undertake a few training
steps on their local datasets, contributing to the refinement
of the model. The locally updated models are then transmit-
ted back to the server for aggregation. This iterative process
continues with the server selecting another cohort, possibly
composed of a different set of clients, for each successive
training round until the global model converges.

The effect of the cohort size on FL performance has been
assessed in numerous studies [9, 10, 22, 34]. While larger
cohort sizes intuitively learn from more data in each round,
thus accelerating the convergence of the global model [2],
they have been found to yield diminishing returns [9]. Fur-
thermore, larger cohorts often use client updates inefficiently,
requiring more resources and time to reach similar accuracy
levels compared to smaller cohort sizes [9, 22]. As a result,
current methods struggle to fully take advantage of model
updates from a large number of clients [5].
This work explores a strategy that harnesses increased

client participation more efficiently. FL research tradition-
ally focuses on the one-cohort setting and speeds up model
convergence by increasing the size of a cohort [5]. We in-
stead propose and investigate the simple idea of partitioning
the network into several cohorts1, each of which runs in-
dependent and parallel FL training sessions. We name this
approach Cohort-Parallel Federated Learning, or CPFL. The

1We refer to network partitions as cohorts throughout this work.
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Figure 1. The architecture of Cohort-Parallel Federated
Learning (CPFL).

architecture of CPFL is illustrated in Figure 1. Clients within
a cohort contribute to training an FLmodel specific to that co-
hort (step 1), leveraging any existing FL algorithm [1, 27, 34].
This trained cohort model is then uploaded to the global
FL server (step 2). Finally, the server unifies these multiple
cohort models into a single global model through the process
of Knowledge distillation (KD) (step 3). KD is a technique
that combines the knowledge of different teacher models
into a unified student model [18]. We leverage cross-domain
and unlabeled public datasets to carry out KD and produce
the final model.
CPFL provides three main benefits compared to single-

cohort FL. Firstly, smaller networks make more efficient use
of client updates, reducing the computation and communica-
tion resources required to train a model. Secondly, smaller
networks converge significantly quicker than the entire net-
work, reducing overall training time. We illustrate this effect
in Figure 2, which shows the evolution of validation loss
without partitioning the network (dashed curve) and when
partitioning the network (solid curves). We annotate with
vertical lines the round when models have converged, ac-
cording to our stopping criterion described in Section 4.1.
From this figure, it is evident that smaller partitions converge
faster than when the network is not partitioned, both with
IID and non-IID data distributions. Thirdly, partitioning the
network into smaller cohorts provides a flexible means to
control resource usage and time to convergence by appropri-
ately choosing number of cohorts. Our proposal is generic
and can therefore be applied to any FL setting.

Contributions. This work makes the following contribu-
tions:

• We propose CPFL, which uses partitioning as a sim-
ple and effective strategy to improve FL efficiency in
terms of time-to-accuracy and training resource usage
(Section 3).
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Figure 2. Comparing validation loss for partitioned (solid
curves) and unpartitioned (dashed curve) networks across
IID (left figure) and non-IID (right figure) distributions. The
vertical dotted line denotes the convergence point of the
training. Additional details on the experiment setup are pro-
vided in Appendix B.1.

• We provide theoretical guarantees on the performance
of the global model through domain adaptation anal-
ysis. Our result extends KD to a more general setting
where the teacher model is composed of a mixture of
distributions, as is the case for CPFL (Section 3.2).
• We conduct extensive experiments using realistic traces
of devices exhibiting different compute and network
speeds on two image classification datasets with vary-
ing data distributions (Section 4). We analyze the effect
of the number of cohorts in CPFL on the achieved test
accuracy, resource utilization, and training time. Our
results on the CIFAR-10 dataset under non-IID data
distributions demonstrate that employing just four co-
horts can already lead to a 1.3× reduction in training
resource usage and 1.9× faster convergence with a
minimal drop in test accuracy of 0.6% compared to
traditional FL.

In summary, CPFL offers FL practitioners a simple and
pragmatic method to obtain considerable resource savings
and shorter training sessions in FL systems.

2 Related Work

Cohorts in Federated Learning. The idea of grouping
clients under some criterion referred to as clustering has been
well-studied in the FL literature [14, 15, 32]. The first set
of these works leverages clustering to solve the federated
multi-task learning (FMTL) problem, which assumes that
there exist 𝑘 different data distributions D1,D2, . . .D𝐾 in a
network of𝑚 clients. Each distribution D𝑖 corresponds to a
different task 𝑖 where these approaches aim to cluster clients
that solve similar tasks without the explicit knowledge of
cluster identities [15, 36]. The second set of works focuses
on mitigating the impact of non independent and identi-
cally distributed (non-IID) data or client data distribution
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shift (e.g., concept shift) by clustering statistically similar
clients [7, 32]. Such clustering relies on some statistics col-
lected during training e.g., similarity of gradient or model
updates obtained from clients, and typically introduces over-
heads to obtain clusters. Other works use clustering to build
a multi-tier hierarchical topology considering both data dis-
tribution and communication efficiency [33]. In contrast to
the above works, we study and showcase the benefits of
partitioning i.e., simply dividing the network into arbitrary
groups of clients. Uniquely, our work explores the trade-offs
between time to convergence, resource usage, and attained
accuracies intricately tied to the number of partitions.

Parallelism in Federated Learning. The parallelism in-
duced by increasing the number of participating clients per
roundwas initially investigated byMcMahan et al. [34]. They
observed that leveraging more clients per round reduced
the number of rounds required to reach a target accuracy.
However, the benefits extended only to a certain threshold
number of clients, beyond which the returns diminished sig-
nificantly. Charles et al. [9] further examined the impact of
large client participation across various learning tasks. The
conclusions were similar, where the threshold was empiri-
cally shown to lie between 10 and 50, interestingly the same
for all tasks. In a network of thousands of clients with several
hundred available clients per round, this empirical thresh-
old clearly illustrates the limitations of current methods in
effectively utilizing increased client participation. [9] also
show that federated algorithms under large client participa-
tion use local updates inefficiently, requiring significantly
more samples per unit-accuracy. These limitations call for
a novel approach that can better capitalize increased client
participation [5].

Knowledge Distillation (KD). In this work, we leverage
KD to combine the knowledge of individual cohort models
into a single global model at the server. KD was initially pro-
posed to extract information from a complex teacher model
into a small student model [18]. Conventionally, the train-
ing of the student model involves the minimization of the
disparity between the logits produced by the student and
teacher, which are computed utilizing an appropriate aux-
iliary dataset [18]. KD has been increasingly used in FL to
reduce communication costs [16, 17, 35], enable heteroge-
neous client models [29, 31] or mitigate privacy risks [16].
More generally, KD has also been used to exchange knowl-
edge in a distributed network of clients [4, 38].

CPFL extremes. We highlight two algorithms in the liter-
ature that are special cases of our proposed CPFL algorithm.
One extreme is the one-shot FedKD algorithm [16] wherein
each node or client is its own cohort. On the other extreme
is the standard FedAvg algorithm [34] where all nodes be-
long to a single cohort. In particular, FedAvg does not utilize
KD since there is only one cohort, requiring no knowledge

Algorithm 1: Cohort-Parallel Federated Learning
Input: Set of 𝑛 cohorts {C𝑖 }𝑛𝑖=1, aggregation weights

{𝑝𝑖 }𝑛𝑖=1, learning rate 𝜂, public dataset D̂𝑝 ,
parametric function 𝑓 from ℎ𝜃 , number of
epochs 𝐸

Output: Final global model parameters 𝜃
Cohort Servers Execute

for each cohort 𝑖 = 1, . . . ,𝑛 in parallel do
𝜃𝑖 ← train model using standard FL
Send 𝜃𝑖 to the global server

end

Global Server Executes

Initialize global model parameters 𝜃𝑠
for 𝒙 ∈ D̂𝑝 do

for 𝑖 = 1, . . . ,𝑛 do

𝒛𝑖 ← 𝑓 (𝒙 ;𝜃𝑖 )
end

�̃� ← ∑𝑛
𝑖=1 𝑝𝑖𝒛𝑖 ▷ aggregate logits

end

for 𝑒 = 1, . . . ,𝐸 do

for mini-batch 𝒃 ∈ D̂𝑝 do
𝒛𝑠 ← 𝑓 (𝒃 ;𝜃𝑠 )
𝜃𝑠 ← 𝜃𝑠 − 𝜂 · ∇𝜃𝑠L ▷ KD using eq. (3)

end

end

return 𝜃

fusion. CPFL can proficiently navigate this spectrum, ex-
hibiting interesting characteristics that can be controlled by
altering the number of cohorts.

3 Cohort-Parallel Federated Learning

We now describe CPFL, a learning approach that combines
the strength of multiple parallel FL sessions with KD. We
illustrate our approach in Figure 1 and provide pseudo code
in Algorithm 1.

3.1 Algorithm overview

Consider a supervised learning problem with input space X
and output spaceY. For a model ℎ𝜃 : X → Z parameterized
by 𝜃 ∈ R𝑑 , each data point (𝑥 ,𝑦) ∈ X × Y incurs a loss of
ℓ (ℎ𝜃 (𝑥),𝑦) where ℓ : Z × Y → R is a non-negative loss
function. The expected loss of ℎ𝜃 on data distribution D
is defined as LD (𝜃 ) = E(𝒙 ,𝑦)∼D [ℓ (ℎ𝜃 (𝒙),𝑦)]. We consider
an FL setting with𝑀 clients and our algorithm proceeds as
follows.
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In the first stage of the algorithm, the global server ran-
domly partitions the clients into 𝑛 cohorts, each compris-
ing 𝐾 clients such that 𝑛 ∗ 𝐾 = 𝑀 .2 We opt for a ran-
dom partitioning of nodes into cohorts due to its simplicity
and universality. This approach ensures unbiased division
without introducing added complexities or biases that more
advanced partitioning strategies might incur3. Each client
has a private local dataset following its local distribution
D𝑖 ,𝑘 ,∀𝑖 ∈ [𝑛],∀𝑘 ∈ [𝐾]. Cohorts operate in parallel, run-
ning independent FL training sessions using any traditional
FL algorithm, such as FedAvg, while reporting to their re-
spective cohort servers, as shown in Step 1 of Figure 1. These
servers could, for example, correspond to geographically
distributed FL servers running FL sessions within their ge-
ographic boundaries or correspond to co-located servers
within a single global server. Each such server trains co-
hort specific parameters 𝜃𝑖 , which minimizes the average
risk across all clients within the cohort. Precisely, for every
𝑖 ∈ [𝑛],

𝜃𝑖 ∈ argmin𝜃
1
𝐾

𝐾∑︁
𝑘=1
LD𝑖 ,𝑘 (𝜃 ). (1)

Once training converges, the cohort server transmits 𝜃𝑖 to
the global server, as shown in Step 2 of Figure 1.
In the second stage of the algorithm, the global server

distills the knowledge of each cohort model (called teacher
models) into a single global model (called the student model)
once all cohorts have converged, shown in step 3 in Fig-
ure 1. This knowledge transfer is facilitated by an unla-
beled public dataset D̂𝑝 . Specifically, the global server gen-
erates logit vectors 𝒛𝑖 = 𝑓 (𝒙;𝜃𝑖 ) for every 𝒙 ∈ D̂𝑝 for each
cohort model 𝑖 ∈ [𝑛]. These logits are then aggregated
�̃� :=

∑𝑛
𝑖=1 𝑝𝑖𝒛𝑖 where 𝑝𝑖 denotes the weights of the aggrega-

tion with
∑𝑛
𝑖=1 𝑝𝑖 = 1 to act as soft-targets for the process

of knowledge distillation. Denoting by 𝜃𝑠 the parameters of
the global server’s model and 𝒛𝑠 = 𝑓 (𝒙 ;𝜃𝑠 ), the global server
solves the following optimization problem:

𝜃𝑠 ∈ argmin𝜃 E𝒙∼D𝑝 [L(𝒛𝑠 , �̃�)] (2)
where L(𝒛𝑠 , �̃�) = ∥𝒛𝑠 − �̃�∥1 (3)

and ∥.∥1 represents the L1 norm. Our complete approach is
outlined in Algorithm 1.
We set the weights {𝑝𝑖 }𝑛𝑖=1 for logit aggregation by ex-

tending the approach used in one-shot FedKD [16] based
on the label distribution of nodes. Each cohort server first
aggregates the label distributions of its nodes, forming a
cohort-wide distribution. The global server then assigns
per cohort weight based on its aggregated label distribu-
tion. Compared to unweighted averaging, this significantly

2This is for simplicity - our setting still holds otherwise.
3An advanced partitioning scheme could be a multi-objective function that
considers data skewness, device characteristics, etc.

boosts the effectiveness of knowledge distillation since par-
ticular cohorts might be better suited to predict particular
target classes [16]. However, sharing of label distributions
by nodes within a cohort may pose privacy risks. To mitigate
this risk, one can compute aggregated label distributions
using secure hardware [12] or via secure aggregation [6],
avoiding the leakage of individual label distributions. Lastly,
we highlight that CPFL can leverage any existing FL algo-
rithm in stage 1, ranging from FedAvg [34] to more advanced
algorithms [1, 27].

3.2 Cross-domain analysis

In line with our setting, we established a bridge between
knowledge distillation and the theory of domain adaptation.
The concept of domain adaptation revolves around training
a classifier to perform effectively in a target domain using a
model previously trained in a source domain. This concept
mirrors the structure of our framework, where we distill
knowledge from models trained in parallel using FL on mul-
tiple distinct distributions within a cohort and subsequently
transfer it to a global model. By viewing our framework
through this lens, we developed a generalization bound for
our distilled model by drawing upon the principles of domain
adaptation theory [3].
Let D represent the target distribution andH be the hy-

pothesis class parameterized by Θ ⊂ R𝑑 asH = {ℎ𝜃 ,𝜃 ∈ Θ}.
With a slight change in notation, we use ℎ in place of ℎ𝜃
for simplicity and indicate by LD (ℎ) the risk of ℎ ∈ H . We
define theHΔH -divergence between a source distribution
D′ and the target distribution D, 𝑑HΔH (D′,D) as

2 sup
ℎ,ℎ′∈H

|P𝒙∼D′ (ℎ(𝒙) ≠ ℎ′ (𝒙)) − P𝒙∼D (ℎ(𝒙) ≠ ℎ′ (𝒙)) |

with HΔH representing the symmetric difference space
defined asHΔH := {ℎ(𝒙) ⊕ ℎ′ (𝒙) |ℎ,ℎ′ ∈ H}. Furthermore,
we define 𝜆 := infℎ∈H {LD′ (ℎ) + LD (ℎ)} as the risk for the
optimal hypothesis across the two distributions.
For each cohort 𝑖 ∈ [𝑛], we designate ℎ𝑖 and D𝑖 as the

respective hypothesis and distribution. Given that each co-
hort conducts federated training in parallel, we characterize
the distribution D𝑖 as a mixture of distributions from its 𝐾
clients i.e., D𝑖 = 1

𝐾

∑𝐾
𝑘=1D𝑖 ,𝑘 . Consequently, we consider a

problem of 𝑛 ∗ 𝐾 sources domain adaptation. Denoting the
hypothesis on the global server by ℎ𝑠 =

∑𝑛
𝑖=1 𝑝𝑖ℎ𝑖 , we state

the following theorem:

Theorem 1. Let H be a finite hypothesis class and ℎ𝑠 :=∑𝑛
𝑖=1 𝑝𝑖ℎ𝑖 , where 𝑝𝑖 > 0 and

∑𝑛
𝑖=1 𝑝𝑖 = 1. Suppose that each

source dataset has𝑚 instances. Then, for any 𝛿 ∈ (0, 1), with
probability at least 1−𝛿 , the expected risk of ℎ𝑠 on the target
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distribution D is bounded by:

LD (ℎ𝑠 ) ≤
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑖

𝐾
LD̂𝑖 ,𝑘 (ℎ𝑖 )

+
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑖

2𝐾

(
1
2𝑑HΔH (D𝑖 ,𝑘 ,D) + 𝜆𝑖 ,𝑘

)

+
√︂

log(2𝑛𝐾/𝛿)
2𝑚

(4)

where 𝜆𝑖 ,𝑘 := infℎ∈H
{
LD𝑖 ,𝑘 (ℎ) + LD (ℎ)

}
and D̂𝑖 ,𝑘 is the

observable dataset of the distribution D𝑖 ,𝑘 .

We provide a proof in Appendix A. In essence, the theorem
establishes an upper bound on the loss of the global model by
the weighted sum of: i) the risk of each cohort model on its
clients’ data; ii) the discrepancy between the cohort’s client
distribution and the target distribution, quantified by the
second term on the right-hand side; and iii) a constant term
contingent on the number of data points and the number
of sources. Additionally, it highlights the benefits of using
multiple small cohorts, which generally achieve better per-
formance on their clients’ data compared to larger cohorts.
By improving the performance of individual cohort models,
we consequently strengthen the performance bound of the
global model. Our theorem extends previous works [16, 31]
to a more general setting where we distill knowledge from
teacher models which themselves are trained on a mixture
of their respective client distributions.

4 Evaluation

We implement CPFL and explore different trade-offs between
achieved accuracy, training time, and resource usage for
different data distributions and number of cohorts.

4.1 Experiment setup

We have implemented CPFL using PyTorch and published
all source code online.4

Dataset.We experiment with both the CIFAR-10 and FEM-
NIST datasets. CIFAR-10 is a common and well-known base-
line in machine learning and consists of 50 000 color images,
divided amongst ten classes [25]. FEMNIST contains 805 263
grayscale images, divided amongst 62 classes [8]. As back-
bone models, we use a LeNet architecture [28] for CIFAR-10
and a CNN [34] for FEMNIST. We fix the batch size to 20.
Clients within a cohort train using the standard FedAvg al-
gorithm utilizing the SGD optimizer with a learning rate
of 𝜂 = 0.002 and a momentum of 0.9 for CIFAR-10, and
𝜂 = 0.004 for FEMNIST. These values are taken from existing
works [13, 19]. Clients perform one local epoch in a given
round for CIFAR-10 and five local steps for FEMNIST.

We consider a network with 200 nodes for CIFAR-10 and
take a fixed random subset of 1000 nodes (out of 3550 nodes)
4See https://github.com/sacs-epfl/cpfl.

for FEMNIST. We vary the number of cohorts 𝑛 ∈ [1, 200]
for CIFAR-10 and 𝑛 ∈ [1, 64] for FEMNIST where for each
setting of 𝑛, the nodes are split randomly into 𝑛 cohorts. For
CIFAR-10, we experimentwith varying degrees of non-IIDness,
controlled by 𝛼 . Specifically, we construct heterogeneous
data splits using the Dirichlet distribution, in line with pre-
vious work [16, 20, 31]. We experiment with 𝛼 = 1 (low het-
erogeneity), 𝛼 = 0.3 (moderate heterogeneity) and 𝛼 = 0.1
(high heterogeneity). FEMNIST follows a natural non-IID
partitioning based on the data sample creators.
Distillation. For CIFAR-10, we perform KD using the

STL-10 dataset [11], a dataset inspired by CIFAR-10 that
has also been utilized in earlier studies [35]. This dataset
contains 100 000 data samples. For FEMNIST, we use the
SVHN dataset, containing 531 131 unlabeled images of house
numbers [37]. For distillation, we use the Adam optimizer,
a learning rate of 0.001, a batch size of 512, and train for 50
epochs.
Validation set. To progress to the second stage of the

algorithm, CPFL requires a signal to determine when cohorts
have finished training. To achieve this, we have nodes within
the cohort compute and report the loss of the global model
on a local validation set. This validation set is 10% of the
local dataset, and only nodes with at least 10 data samples
construct this validation set and report their validation loss.
The cohort server collects all validation losses during each
round and averages them. A cohort stops model training
once the minimum validation loss has not decreased for 𝑟
rounds. We have conducted various trials, and we found that
a value of 𝑟 = 50 for CIFAR-10 and 𝑟 = 200 for FEMNIST
achieves a reasonable trade-off between waiting too long and
letting cohort models sufficiently converge. We also apply a
moving average with a window size of 20 to reduce noise.

Traces. We evaluate CPFL under realistic settings to pro-
vide a closer approximation to real-world conditions. To this
end, we integrate network and compute capacities traces
to simulate the hardware performance of nodes [26]. These
traces contain the hardware profile of 131 000mobile devices
and are sourced initially from the AI and MobiPerf bench-
marks [21, 23]. They span a broad spectrum ranging from the
network speeds of 130 KB/s to 26 MB/s while the compute
speeds vary from 0.9 secs to 11.9 secs to train a mini-batch.
We assume that the cohort servers have sufficiently large
incoming and outgoing bandwidth capacities that can handle
all transfers in a round in parallel. Finally, all nodes remain
online and available during the experiment.
Compute infrastructure and implementation. We

run all experiments on machines in our compute cluster.
Each machine is equipped with dual 24-core AMD EPYC-2
CPU, 128 GB of memory, a NVIDIA RTX A4000 GPU, and
is running CentOS 8. For reproducibility and in line with
related work in the domain, we simulate the passing of time
in our experiments [1, 26, 27].We achieve this by customizing
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Figure 3. The test accuracy, convergence time and resource usage (in CPU hours) of CIFAR-10, for increasing number of
cohorts (𝑛) and different heterogeneity levels (controlled by 𝛼). Results for 𝛼 = 0.3 are included in Appendix B.3.
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Figure 4. The test accuracy, convergence time and resource usage (in CPU hours) of FEMNIST, for increasing number of
cohorts (𝑛).

the default event loop provided by the asyncio library and
processing events without delay.
We experiment with FedAvg [34] as the default FL algo-

rithm for training within the cohort. We report top-1 test
accuracies when evaluating the final model with the test sets.
Lastly, we run each experiment with five different seeds,
varying data distribution (for CIFAR-10) and node character-
istics, and average all results.

4.2 Time and resource savings by CPFL

We first evaluate the test accuracy, time to convergence, and
resource usage by CPFL, for CIFAR-10 and FEMNIST under
different data distributions (𝛼) and number of cohorts (𝑛).
For CIFAR-10, we vary 𝑛 from 1 to 200; 𝑛 = 1 corresponds
to the traditional FL setting, whereas 𝑛 = 200 assigns each
node to its own cohort, corresponding to one-shot FedKD as
described in Section 2. We remark that one-shot FedKD has
only been evaluated with 20 nodes at most, and its perfor-
mance in larger networks remains unknown. For CIFAR-10
and FEMNIST, we set the client participation rate to 100%
and 20% respectively.
Test accuracy. Figures 3 and 4 (left plot) show the test

accuracy (in %) of CPFL for the CIFAR-10 and FEMNIST
datasets respectively, across different values of𝑛. Both datasets
show a decreasing trend in test accuracy as 𝑛 increases. This
is because (i) each cohort learns on fewer data as 𝑛 increases,

and (ii) KD does not perfectly distill all knowledge. For FEM-
NIST, 𝑛 = 1 shows a test accuracy of 77.4%, which gradually
decreases to 65.7% for 𝑛 = 64. For CIFAR-10 with 𝛼 = 0.1, ac-
curacy drops from 70.4% (𝑛 = 1) to 47.9% (𝑛 = 200). Nonethe-
less, we observe the drops are marginal when considering
lower values of 𝑛. For instance, for CIFAR-10 with 𝛼 = 0.1,
the accuracy of 70.4% at 𝑛 = 1 reduces just to 69.8% at 𝑛 = 4.
Thus lower values of 𝑛 make for an interesting case for ob-
taining significant time and resource savings as we show
next.
Time-to-accuracy. Figures 3 and 4 (middle plot) show

the time to convergence of CPFL for the same evaluated
values of 𝑛. This is the time between starting model training
and training completion by all cohorts. For CIFAR-10, we
notice a stark decrease in time to convergence as 𝑛 increases:
for 𝛼 = 0.1 and when increasing 𝑛 from 1 to 4, the time
until convergence decreases from 413 h to 218 h, a speedup
of 1.9×with a minimal loss in test accuracy. Similarly, on the
FEMNIST dataset, the time until convergence reduces from
290 h (𝑛 = 1) to 220 h (𝑛 = 4), with a speedup of 1.3×. This
speedup is because cohorts with fewer data samples require
less time to converge. We remark that Figure 3 excludes the
time to complete the KD, but we found this to be minimal
compared to the overall training time. We provide more
details on this in Appendix B.2. For CIFAR-10 with non-IID
data (𝛼 = 0.1), CPFL can obtain speedups between 1.6−7× as
𝑛 varies from 2 to 200. These speedups might be particularly
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Figure 5. The finish times of individual cohorts, for different
numbers of total cohorts and data distributions. We mark
the finish time of each group with a symbol.

beneficial in practical FL settings where one has to execute
many runs, e.g., for hyperparameter tuning [24].

We further analyze the training speedups by CPFL against
FL by distilling the models produced by each cohort after a
fixed duration. Specifically, we distill 10 and 15 hours into the
experiment for 𝛼 = 0.1 and the CIFAR-10 dataset. 10 and 15
hours into the experiment, FL attained 28.7% and 35.4% test
accuracy, respectively. For 𝑛 = 2, these accuracies are 36.16%
and 39.56%, respectively. For 𝑛 = 16 the increase in accuracy
over FL is even more pronounced, reaching 54.1% and 56.7%
accuracy 10 and 15 hours into the experiment, respectively.
We attribute these speedups primarily to the decrease in
round durations. As 𝑛 increases, cohorts become smaller and
thus a round requires fewer client updates compared to the
setting with 𝑛 = 1 where the server needs all 200 model
updates to conclude a round.
Resource usage. Figures 3 and 4 (right plot) visualize

the resource usage of CPFL in CPU hours, representing the
total time CPUs spent on training. We observe a reduction
in resource usage thanks to the faster convergence of co-
hort models. For CIFAR-10 in the high heterogeneity setting
(𝛼 = 0.1), increasing 𝑛 from 1 to 4 decreases the required
CPU hours from 5577 h to 4249 h, or 1.3×. Similarly for the
FEMNIST dataset, the CPU hours reduce from 9093 h (𝑛 = 1)
to 7011 h (𝑛 = 4), or 1.3×. On the other hand, when increas-
ing 𝑛 up to 200, a substantial reduction of 8.8× is achieved
for 𝛼 = 0.1 for CIFAR-10, albeit with a trade-off of decreased
accuracy. Consequently, in the non-IID case with 𝛼 = 0.1,
CPFL demonstrates the potential to reduce resource usage
by 1.2 − 8.8× as 𝑛 varies from 2 to 200. We also observed
reductions in communication volume, both for CIFAR-10
and FEMNIST. They follow a similar trend as the reduction
in resource usage, and we further comment on this in Ap-
pendix B.4.
Experimental conclusion. Our results suggest that a

reasonable value for the number of cohorts lies between
4 and 16. We conclude that while FL (𝑛 = 1) trains more
accurate models compared to CPFL, it incurs longer training
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Figure 6. The relation between the number of data samples
and the time until convergence within a cohort, for 𝑛 =
4, 8, 16 and 32, and under a non-IID data distribution (𝛼 = 0.1).
We have 5 ∗ 𝑛 measurements for each 𝑛 due to 5 seeds.

times and more resource usage. On the other hand, one-shot
FedKD (𝑛 = 𝑀) suffers from accuracy loss but shows great
potential to reduce training time and resource usage. CPFL
can proficiently navigate these two extremes by controlling
the number of cohorts, offering FL practitioners a simple way
to tailor FL training sessions according to their requirements.

The remaining experiments in this section use the CIFAR-
10 dataset as it allows experimentation with different degrees
of non-IIDness.

4.3 Training time of cohorts

We further analyze the convergence times of cohorts in some
of the experiments in Section 4.2. We plot in Figure 5, for
𝑛 = 32 and 𝑛 = 200, and 𝛼 = 1 and 𝛼 = 0.1, an ECDF with the
fraction of cohorts that completed training as the experiment
progressed. These numbers correspond to the experiment
described in Section 4.2 on the CIFAR-10 dataset. In the plot,
we annotate the completion of the last cohort in each setting
with a marker.

Our first observation is that for 𝑛 = 200, 75% of the cohorts
converge within less than 5 hours. We do notice some slower
cohorts that prolong overall training. Compared to when
using 𝛼 = 1, this slowdown is more pronounced for 𝛼 = 0.1,
where data distribution is much more skewed. We also notice
similar effects for 𝑛 = 32, and we observe a higher variation
of training times across cohorts for 𝑛 = 32 and 𝛼 = 0.1,
compared to 𝑛 = 32 and 𝛼 = 1. Our results in Figure 5
suggest that FL practitioners can further gain speedups by
proceeding to the KD step even when a fraction of cohorts
(e.g., 75%) have converged instead of waiting for all cohorts to
finish training. This is similar in spirit to how the federated
server in traditional FL tolerates partial updates when not
all clients complete the expected number of local steps in
specified time [30], albeit at the cost of accuracy.

4.4 Cohort data samples and training time

CPFL is based on the premise that smaller cohorts i.e., cohorts
with fewer clients and consequently with fewer total data
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𝛼 𝑛 Teacher acc. Student acc. Δ

0.1

4 65.76 ± 2.63 69.79 ± 0.55 +4.03
16 48.24 ± 5.86 64.59 ± 0.39 +16.35
64 27.64 ± 7.38 60.28 ± 0.80 +32.65
200 17.32 ± 5.67 47.89 ± 1.75 +30.57

1

4 74.44 ± 0.86 74.74 ± 0.30 +0.30
16 63.37 ± 1.76 69.11 ± 0.34 +5.74
64 42.44 ± 5.17 58.05 ± 0.24 +15.61
200 27.00 ± 5.29 48.43 ± 0.27 +21.44

Table 1. The average accuracy of teacher and student models
for varying values of 𝛼 and 𝑛, and for the CIFAR-10 dataset.
The right-most column shows the improvement in test accu-
racy by knowledge distillation.

samples, converge quicker. To validate this premise, we plot
in Figure 6 the relation between the number of total data
samples and the time until convergence for every cohort
under a non-IID data distribution (𝛼 = 0.1).We extract results
for 𝑛 = 4, 8, 16 and 32 for the experiment runs described in
Section 4.2. Figure 6 hints at a positive relation between
the number of data samples in a cohort and the time until
convergence. Therefore, FL practitioners can manipulate 𝑛
to increase or decrease the average number of data samples
per cohort, subsequently controlling the time required for
the cohort to finish training.

4.5 Teacher and student accuracies of KD

We now assess the accuracy improvement by KD. We show
in Table 1 the average test accuracy of the teacher and student
models and the average improvement (Δ), for 𝛼 = 0.1 and
𝛼 = 1 across four different values of 𝑛. We also report the
corresponding standard deviations.

Table 1 shows that increasing 𝑛 improves the gain in test
accuracy induced by KD. This is because, with higher val-
ues of 𝑛, each cohort trains on proportionately less data,
affecting the generalization performance of the teacher mod-
els. KD in this case draws a larger relative improvement.
We also observe that the gains in accuracy are higher for
𝛼 = 0.1 compared to 𝛼 = 1.0. We suspect this is because
under high heterogeneity, KD is more capable of combin-
ing models that recognize specialized features compared to
low heterogeneity settings where mostly similar models are
produced. This observation also aligns with KD’s original
concept as a method to effectively combine knowledge from
specialized ensembles, shown in [18].

5 Conclusion

This paper introduced Cohort-Parallel Federated Learning
(CPFL), an innovative approach to enhance FL by partition-
ing the network into several smaller cohorts. The under-
pinning principle of CPFL is that smaller networks lead to

quicker convergence and more efficient resource utilization.
By unifying the cohort models with Knowledge Distillation
and a cross-domain, unlabeled dataset, we produce a final
global model that integrates the contributions from all clients.
Our experimental findings confirm that this strategy yields
significant advantages in training time and resource utiliza-
tion without considerably compromising test accuracy. This
approach offers practitioners a tangible means to control
their FL resource consumption and convergence timelines.
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A Theoretical Analysis

We begin by recalling the notations and definitions used
throughout the theoretical analysis.We defineHΔH -divergence
between a source D′ and target D distribution as:

𝑑HΔH (D′,D) = 2 sup
ℎ,ℎ′∈H

����P𝑥∼D′ (ℎ(𝑥) ≠ ℎ′ (𝑥))
− P𝑥∼D (ℎ(𝑥) ≠ ℎ′ (𝑥))

����
Let ℎ𝑠 =

∑𝑛
𝑖=1 𝑝𝑖ℎ𝑖 where

∑𝑛
𝑖=1 𝑝𝑖 = 1 and 𝑝𝑖 > 0, denote the

hypothesis on the global sever and ℎ𝑖 the one on the cohort
𝑖 . Let D be any target distribution and D𝑖 be a mixture of
𝐾 ’s local distribution {D𝑖 ,𝑘 }𝐾𝑘=1, that is, D𝑖 =

1
𝐾

∑𝐾
𝑘=1D𝑖 ,𝑘 .

Denote the expected risk of hypothesis ℎ on the distribution
D as LD (ℎ). We state the following lemmas.

Lemma 2 (Theorem 3, [3]). For any target distributionD and
source distribution D′. The expected risk of a hypothesis ℎ
on the D is bounded by

LD (ℎ) ≤ LD′ (ℎ) +
1
2𝑑HΔH (D′,D) + 𝜆 (5)

where we note 𝜆 = infℎ∈H {LD′ (ℎ) + LD (ℎ)}

Lemma 3. Let {D𝑘 }𝐾𝑘=1 be a set of distributions and de-
fine D′ = 1

𝐾

∑𝐾
𝑘=1D𝑘 . For any distribution D, the HΔH -

divergence between D′ and D is bounded by

𝑑HΔH (D′,D) ≤
1
𝐾

𝐾∑︁
𝑘=1

𝑑HΔH (D𝑘 ,D) (6)

Proof.

𝑑HΔH (D′,D) (7)

=2 sup
ℎ,ℎ′∈H

����P𝑥∼D′ (ℎ(𝑥) ≠ ℎ′ (𝑥)) − P𝑥∼D (ℎ(𝑥) ≠ ℎ′ (𝑥))
����

=2 sup
ℎ,ℎ′∈H

����P𝑥∼ 1
𝐾

∑𝐾
𝑘=1 D𝑘

(ℎ(𝑥) ≠ ℎ′ (𝑥)) − P𝑥∼D (ℎ(𝑥) ≠ ℎ′ (𝑥))
����

=2 sup
ℎ,ℎ′∈H

���� 1𝐾
𝐾∑︁
𝑘=1

P𝑥∼D𝑘 (ℎ(𝑥) ≠ ℎ′ (𝑥)) − P𝑥∼D (ℎ(𝑥) ≠ ℎ′ (𝑥))
����

≤ 2
𝐾

𝐾∑︁
𝑘=1

sup
ℎ,ℎ′∈H

����P𝑥∼D𝑘 (ℎ(𝑥) ≠ ℎ′ (𝑥)) − P𝑥∼D (ℎ(𝑥) ≠ ℎ′ (𝑥))
����

=
1
𝐾

𝐾∑︁
𝑘=1

𝑑HΔH (D𝑘 ,D) (8)

□

Theorem 1. Let H be a finite hypothesis class and ℎ𝑠 :=∑𝑛
𝑖=1 𝑝𝑖ℎ𝑖 , where 𝑝𝑖 > 0 and

∑𝑛
𝑖=1 𝑝𝑖 = 1. Suppose that each

source dataset has𝑚 instances. Then, for any 𝛿 ∈ (0, 1), with
probability at least 1−𝛿 , the expected risk of ℎ𝑠 on the target

distribution D is bounded by:

LD (ℎ𝑠 ) ≤
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑖

𝐾
LD̂𝑖 ,𝑘 (ℎ𝑖 )

+
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑖

𝐾

(
1
2𝑑HΔH (D𝑖 ,𝑘 ,D) + 𝜆𝑖 ,𝑘

)

+
√︂

log(2𝑛𝐾/𝛿)
2𝑚 (9)

Proof. By the definition of ℎ𝑠 and the Jensen inequality, we
have:

LD (ℎ𝑠 ) := LD

(
𝑛∑︁
𝑖=1

𝑝𝑖ℎ𝑖

)
≤

𝑛∑︁
𝑖=1

𝑝𝑖LD (ℎ𝑖 ) (10)

Using Lemma 2, the expected risk of ℎ𝑖 on D is bounded by:

LD (ℎ𝑖 ) ≤ LD𝑖 (ℎ𝑖 ) +
1
2𝑑HΔH (D𝑖 ,D) + 𝜆𝑖 (11)

where 𝜆𝑖 = infℎ∈H
{
LD (ℎ) + LD𝑖 (ℎ)

}
. LetD𝑖 = 1

𝐾

∑𝐾
𝑘=1D𝑖 ,𝑘

be a mixture of distributions in cohort 𝑖 , we have then:

LD (ℎ𝑖 ) ≤ LD𝑖 (ℎ𝑖 ) +
1
2𝑑HΔH (D𝑖 ,D) + 𝜆𝑖

≤LD𝑖 (ℎ𝑖 ) +
1
2𝐾

𝐾∑︁
𝑘=1

𝑑HΔH (D𝑖 ,𝑘 ,D) + 𝜆𝑖

≤ 1
𝐾

𝐾∑︁
𝑘=1
LD𝑖 ,𝑘 (ℎ𝑖 ) +

1
2𝐾

𝐾∑︁
𝑘=1

𝑑HΔH (D𝑖 ,𝑘 ,D) + 𝜆𝑖

≤ 1
𝐾

𝐾∑︁
𝑘=1
LD𝑖 ,𝑘 (ℎ𝑖 ) +

1
2𝐾

𝐾∑︁
𝑘=1

𝑑HΔH (D𝑖 ,𝑘 ,D) +
1
𝐾

𝐾∑︁
𝑘=1

𝜆𝑖 ,𝑘

(12)

where the second inequality is application of Lemma 3. The
third one follows the fact that D𝑖 = 1

𝐾

∑𝐾
𝑘=1D𝑖 ,𝑘 . The last

inequality follows the same fact and application of triangle
and Jensen’s inequality on 𝜆𝑖 . Using Hoeffding’s inequality,
with probability 1 − 𝛿

𝑛𝐾 , the risk of hypothesis ℎ𝑖 on the
source distribution D𝑖 ,𝑘 is upper bounded by

LD𝑖 ,𝑘 (ℎ𝑖 ) ≤ LD̂𝑖 ,𝑘 (ℎ𝑖 ) +
√︂

log(2𝑛𝐾/𝛿)
2𝑚 (13)

whereLD̂𝑖 ,𝑘 (ℎ𝑖 ) is the risk ofℎ𝑖 on the empirical distribution
D̂𝑖 ,𝑘 . Combining Equations (10), (12) and (13) and using the
same analysis as in [31]. With probability at least 1 − 𝛿 over
𝑛𝐾 sources of𝑚 samples, we have :

LD (ℎ𝑠 )

≤
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑖

𝐾
LD𝑖 ,𝑘 (ℎ𝑖 ) +

𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑖

2𝐾𝑑HΔH (D𝑖 ,𝑘 ,D)

+
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑖

𝐾
𝜆𝑖 ,𝑘
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≤
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑖

𝐾
LD̂𝑖 ,𝑘 (ℎ𝑖 ) +

𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑖

𝐾

√︂
log(2𝑛𝐾/𝛿)

2𝑚

+
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑖

2𝐾𝑑HΔH (D𝑖 ,𝑘 ,D) +
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑖

𝐾
𝜆𝑖 ,𝑘

≤
𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑖

𝐾
LD̂𝑖 ,𝑘 (ℎ𝑖 ) +

𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑖

𝐾

(
1
2𝑑HΔH (D𝑖 ,𝑘 ,D) + 𝜆𝑖 ,𝑘

)

+
√︂

log(2𝑛𝐾/𝛿)
2𝑚 (14)

□

B Additional Notes on Experimental

Evaluation

B.1 Motivational Plot (Figure 2)

Figure 2, showing the evolution of validation loss and moti-
vating the approach behind CPFL, has been generated from
the CIFAR-10 experiments described in Section 4.2. These
plots correspond to the validation loss for each of the four
cohorts, in a setting with 𝑛 = 4 and when using 90 as seed,
for 𝛼 = 1 and 𝛼 = 0.3.
In Figure 2, we chose to highlight the results of a single

run rather than averaging across multiple runs. The rationale
behind this decision stems from the fact that when averag-
ing, the stopping criterion which applies to individual runs
does not hold anymeaningful interpretation for the averaged
result. This means that an average might misrepresent the
number of rounds required for convergence or even the va-
lidity of the stopping criterion itself. By focusing on a single
run, we ensure the integrity and applicability of our stopping
criterion, providing a clearer and more direct interpretation
of our results. We have manually verified that our conclusion
also hold true for different seeds and number of cohorts.

B.2 Knowledge Distillation

Figure 3 excludes the time it takes for the KD process to com-
plete. For CIFAR-10, we noticed that KD takes between 50
minutes (for𝑛 = 2) and 305 minutes (for𝑛 = 200) to complete.
This time frame represents a small fraction of the time and
resources required for model training by cohorts. Regarding
FEMNIST, the KD process takes between 59 minutes (for
𝑛 = 2) and 16.8 hours (for 𝑛 = 64). In the case of FEMNIST,
the majority of time is spent on generating inferences from
the teacher models. We propose twomethods to expedite this
process. First, one can parallelize this process by generating
logits from distinct teacher models simultaneously. Second,
one can increase the inference batch size, although at the
cost of additional memory usage.

B.3 CIFAR-10 Results with 𝛼 = 0.3
We show in Figure 7 the test accuracy, convergence time
and resource usage (CPU hours) of the CIFAR-10 dataset.

Compared to Figure 3, this plot includes the 𝛼 = 0.3 setting
that we omitted from Figure 3 for presentation clarity.

B.4 Savings in Communication Volume by CPFL

Besides savings in training time and CPU resource usage
(see Figure 3 and 4), CPFL also provides savings in commu-
nication volume. Figure 8 shows the communication volume
required by CPFL, for the CIFAR-10 and FEMNIST dataset,
and for different number of cohorts (𝑛). The trend in commu-
nication volume as 𝑛 increases is comparable to the trend in
time to convergence and resource usage shown in Figures 3
and 4. For CIFAR-10 with 𝑛 = 200, since each node will per-
form standalone training of its model, we remark that the
only communication volume incurred is when sending the
trained cohort model to the global server.

For the same value of𝑛, we notice that FEMNIST incurs sig-
nificantly more communication volume compared to CIFAR-
10. This is because the model size of FEMNIST in serialized
form is significantly larger than that of CIFAR-10, namely
6.7 MB for FEMNIST compared to 346 KB for CIFAR-10.
Additionally, FEMNIST also requires many more rounds to
converge than CIFAR-10 due to the large overall network
size (1000 nodes) and the challenging nature of the 62-class
classification task. As a result, this leads to escalated com-
munication costs.
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Figure 7. The test accuracy, convergence time and resource usage (in CPU hours) of CIFAR-10, for different number of cohorts
(𝑛) and different heterogeneity levels (controlled by 𝛼).
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Figure 8. The communication volume required by CPFL for convergence, for CIFAR-10 and FEMNIST, and for different
number of cohorts (𝑛). For CIFAR-10 we also show the communication volume for different values of 𝛼 .
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