
Efficient Multiclass Classification with Duet
Shay Vargaftik
VMware Research

Yaniv Ben-Itzhak
VMware Research

Abstract
In the upcoming era of edge computing, the capability to
perform fast training and classification at the edge is an in-
creasing need due to limited connectivity, hardware resources,
privacy concerns, profitability, and more.

Accordingly, we propose a new classifier termed Duet.
Duet incorporates the advantages of bagging and boosting
decision-tree-based ensemble methods (DTEMs) by using
two classifiers instead of a monolithic one. A simple bagging
model is trained using the entire training dataset and is re-
sponsible for capturing the easier concepts. Then, a boosting
model is trained using only a fraction of the dataset represent-
ing the concepts the bagging model finds hard. To make the
whole process resource efficient, we develop a new heuristic
approach to rank data with respect to concepts that the bag-
ging model finds hard. We use this approach, termed data
instance predictability to determine the dataset fraction for
the boosting model training.

We implement Duet as a scikit-learn classifier. Evaluation
using datasets from different domains and with different char-
acteristics indicates that Duet offers a better tradeoff between
classification accuracy and system performance than mono-
lithic DTEMs. Moreover, in an evaluation over a resource-
constrained Raspberry Pi 3 device Duet successfully com-
pletes all training tasks, where some monolithic models fail
due to insufficient resources, indicating broader applicability
of Duet to resource-constrained edge devices.

Duet is a part of an effort for advancements in resource-
efficient classification, and its scikit-learn implementation can
be found in https://research.vmware.com/projects/efficient-
machine-learning-classification.

ACM Reference Format:
Shay Vargaftik and Yaniv Ben-Itzhak. 2022. Efficient Multiclass
Classification with Duet. In 2nd European Workshop on Machine
Learning and Systems (EuroMLSys ’22), April 5–8, 2022, RENNES,
France. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3517207.3526970

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroMLSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-9254-9/22/04. . . $15.00
https://doi.org/10.1145/3517207.3526970

1 Introduction
In edge computing, the capability of a resource-constrained
edge device to perform local and fast training and classifica-
tion is of increasing need due to many emerging use cases
such as limited connectivity and hardware resources or when
local computation is required due to security privacy and even
profitability concerns.

Decision-tree-based ensemble methods (DTEMs) are the
de-facto standard used for tabular data multiclass classifica-
tion. An arising challenge in such classification is the con-
tinued growth of datasets [25] in terms of the number of
features, classes and, data instances, alongside the demand
for greater accuracy. This growth results in larger model mem-
ory footprints, longer training times, and slower classification
latencies at lower throughput.

We aim at alleviating this challenge by relying on well-
established DTEMs and merely augmenting them to obtain
a better resource/performance tradeoff. The leading idea be-
hind our approach is to leverage the inherent differences in
the two main principle strategies employed in existing DTEM
classifiers, i.e., bagging and boosting. Specifically, we seek
to combine bagging and boosting DTEMs in a way that incor-
porates their advantages and mitigates their weaknesses.

A bagging DTEM (e.g., tree bagging [3], random forest [5],
extra trees [16]) has the advantage of a fast (and parallel) train-
ing. It also offers a controlled variance allowing it to learn
relatively simple concepts at low effort. A boosting DTEM
(e.g., AdaBoost [14], GBDT [15, 18], XGBoost [9], Light-
GBM [21], CatBoost [31]), on the other hand, is considerably
slower to train and more amenable to overfitting. Nevertheless,
it offers a controlled bias allowing it to learn hard concepts.

In that light, we propose a new classifier we term Duet. The
two main building blocks of Duet are two DTEM classifiers.
The first classifier is a simple bagging DTEM that is trained
using the entire training dataset. During classification, all
data instances are classified by this classifier, and only the
hard data instances (i.e., cases in which this classifier is not
sufficiently confident) are forwarded to the second classifier.
The second classifier is a boosting DTEM. It is trained using
only a fraction of the training dataset, picked with an emphasis
on the concepts for which the first DTEM under-performs.

To execute the above recipe, we need to efficiently cap-
ture and rank data instances with respect to the concepts that
the bagging DTEM did not learn satisfactorily. To do so, we
develop a heuristic approach that relies on a new metric we
term data instance predictability, whose computation relies
purely on the bagging DTEM and therefore has a low over-
head. To compute the predictability of a labeled data instance,
we classify it by the bagging DTEM and obtain its probability

https://research.vmware.com/projects/efficient-machine-learning-classification
https://research.vmware.com/projects/efficient-machine-learning-classification
https://doi.org/10.1145/3517207.3526970
https://doi.org/10.1145/3517207.3526970
https://doi.org/10.1145/3517207.3526970

EuroMLSys ’22, April 5–8, 2022, RENNES, France Shay Vargaftik and Yaniv Ben-Itzhak

distribution over the classes. Then, predictability is defined
as inversely proportional to the L2 norm distance between
the class distribution vector of the instance and the instance’s
perfect distribution (i.e., a probability distribution vector with
a probability of one in the correct class).

Intuitively, a labeled data instance predictability measures
how “difficult” a specific instance to the bagging DTEM
is. Namely, the predictability measure indicates whether a
specific labeled instance is captured by the bagging DTEM as
a typical representative of its class (i.e., has high predictability
and therefore may offer lower training value to the boosting
DTEM) or otherwise (i.e., has low predictability and therefore
may offer higher training value for the boosting DTEM).

We implement Duet as a scikit-learn classifier [7] (Python
3) with only 240 lines of code [43]. Due to their broad ap-
plicability and usage, we chose a random forest (RF) as the
bagging DTEM and XGBoost as the boosting DTEM. We
then use various datasets from different domains and with
different characteristics for evaluation. We find that Duet
consistently offers a better tradeoff between classification
accuracy and system performance than monolithic random
forest and XGBoost. For example, evaluation over a commod-
ity AWS server reveals that for similar classification accuracy,
Duet’s training and classification times are up to 63× and 42×
lower than that of a monolithic XBGoost model, and its mem-
ory footprint is up to 47× smaller than that of a monolithic
RF.

Repeating these experiments on a resource-constrained
Raspberry Pi 3 device shows similar gains. Moreover, some
RF and XGBoost monolithic models did not successfully
complete their training due to insufficient CPU and mem-
ory resources, while Duet successfully completed training
all models, indicating broader applicability to weaker and
resource-constrained edge devices.

These gains can be attributed to the following design choices
and hyperparameter tuning guidelines we detail in the paper:
• Low memory footprint: we limit the memory footprint of

the random forest mainly by restricting the size of each tree
and also the number of trees. A small model is sufficient
since we only seek to learn the easier concepts.

• Low training time: the training time of the RF model is low
due to its limited size and simplicity. Also, we train the XG-
Boost model using only a predictability-driven fraction of
the training dataset. Thus, its training time is considerably
lower. Other operations within Duet’s training (e.g., com-
pute predictability) are negligible compared to the training
of the RF and XGBoost models.

• Low classification latency: typically, most of the queries
are easy and therefore are classified only by the RF.

To summarise, Duet’s training and classification are illustrated
in Figures 1(a) and 1(b) respectively.

2) The second classifier (XGBoost)
is trained according to a given
fraction of the training data*

#
𝑡𝑟
𝑎𝑖
𝑛𝑖
𝑛𝑔

𝑖𝑛
𝑠𝑡
𝑎𝑛
𝑐𝑒
𝑠

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝑜𝑤 𝐻𝑖𝑔ℎ

1) The first classifier (RF) is
trained by the entire dataset

* Contains a mix of the low and high predictability instances

(a) Training Duet.

#
𝑡𝑒
𝑠𝑡
𝑖𝑛
𝑠𝑡
𝑎𝑛
𝑐𝑒
𝑠

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝐿𝑜𝑤 𝐻𝑖𝑔ℎ

3) The first (RF) classifier is used
to classify the easy instances

4) The second (XGBoost)
classifier is used to classify

the hard instances

(b) Classification by Duet.

Figure 1. Duet’s architecture. 1) We train a small RF using
the entire training dataset and then use it to compute the
training data predictability. 2) Then, we train an XGBoost
classifier using only a predictability-driven fraction of the
training dataset. 3) During classification, instances are first
classified by the RF, and 4) only the hard (low-confidence)
instances are reclassified by the XGBoost model.

2 Predictability
We develop and propose predictability to rank how valuable
a labeled data instance may be to the training of the boosting
classifier of Duet. As mentioned, after we have built the bag-
ging model, we use it to efficiently compute the predictability
of the training instances. To do so, we first classify the training
dataset by the bagging model and obtain the class probability
distributions of each instance. Predictability of an instance
is then given by a distance function that measures how far
the resulting class probability distribution vector is from the
perfect distribution vector with respect to the true label of that
instance. That is, a perfect distribution vector should have a
probability of one in the correct label (i.e., class).

2.1 Distance functions
A natural choice for a distance metric would be using a norm
(e.g., , 𝐿1, 𝐿2, 𝐿∞). For example, using the 𝐿1 norm, predictabil-
ity of a labeled instance (𝑥,𝑦) can be defined as

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥,𝑦) = 1 − 1
2
· | |𝑝𝑝 (𝑥) − 𝑦 | |1, (1)

Efficient Multiclass Classification with Duet EuroMLSys ’22, April 5–8, 2022, RENNES, France

Figure 2. Demonstrating Predictability principles using a toy example.

where 𝑝𝑝 (𝑥) is the instance’s class distribution vector1 by
the bagging classifier and 𝑦 is the perfect distribution vector.
Also, to obtain a normalized measure, we choose the function
constants such that predictability is always in [0, 1]. This way,
a perfect distribution receives a predictability of 1. On the
other hand, being confident with probability 1 (i.e., the highest
possible confidence) in the wrong class has a predictability of
0. Likewise, predictability can be defined via 𝐿∞ as

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥,𝑦) = 1 − ||𝑝𝑝 (𝑥) − 𝑦 | |∞. (2)

The latter is essentially a metric that linearly depends on the
classification confidence level (i.e., the top-1 entry in 𝑝𝑝 (𝑥)).
Some flavors of the instance hardness [39] measure are based
on it. Yet, both these measures are not the best fit for our goal,
as we convey via an example.

Consider a classification task with six classes 0, 1, . . . , 5 and
assume two distribution vectors 𝑝 (𝑥1) = (0.5, 0.5, 0, 0, 0, 0)
and 𝑝 (𝑥2) = (0.5, 0.1, 0.1, 0.1, 0.1, 0.1) by the bagging model
where the correct class of both is the first one (i.e., 𝑦 = 0
for both). Thus, the perfect distribution vector for both is
𝑦 = (1, 0, 0, 0, 0, 0). Clearly, 𝑥1 and 𝑥2 are indistinguishable
with respect to both predictability measures that are based on
𝐿1 and 𝐿∞. However, in this case, we would like 𝑥1 to receive
a lower predictability than 𝑥2 since the former’s confidence in
a wrong class is considerably larger, and the bagging model
is on the verge of making a classification mistake. Intuitively,
such an instance is more confusing to the bagging DTEM
and may hold an important concept that was not learned by
it satisfactorily. Therefore, we use a predictability measure
based on the 𝐿2 norm that captures such properties. Formally,

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥,𝑦) = 1 − 1
√
2
· | |𝑝𝑝 (𝑥) − 𝑦 | |2. (3)

It is worth emphasizing that predictability is an inherently
different measure than a classification confidence level. For
example, if an instance’s classification has high confidence

1Denoted by predict_proba(x) in scikit-learn’s [30] classifiers.

but it is misclassified, it would have a low predictability. On
the other hand, if it has high confidence, but it is correctly
classified, it would have a high predictability.

2.2 Example
We use a toy example to illustrate Duet’s principles and pro-
vide intuition for the predictability measure.
Setup. Figure 2(a) illustrates a toy 2D dataset with two classes.
The training data is marked with “·”, where the test data is
marked with “×”. Using the training data, we build an RF
with 10 decision trees, each limited to 20 leaf nodes. Then,
we use this RF to classify both the training and test data.
Namely, we obtain the classification distributions to calculate
the predictability (using Equation (3)) for the training data
and to obtain the top-1 confidence level for the test data.
Results. In Figure 2(a) and 2(b) (zoom-in area from 2(a)), the
black dotted circles mark the test classification mistakes. In
Figure 2(b), the background circle colors show the predictabil-
ity of each training data instance and the top-1 classification
confidence level of each test data instance. Blue color means
low confidence or predictability, and red means high con-
fidence or predictability, as shown by the color map. It is
evident how typical misclassifications have low confidence
and are closely located to low predictability training data in-
stances. Finally, Figures 2(c) and 2(d) show histograms of
the confidence level of the test data instances and the pre-
dictability of the training data instances. It is evident by the
logarithmic scale how the majority of test instances are easy
(i.e., with high confidence level), whereas misclassifications
are typically hard. Likewise, the majority of train instances
have high predictability, whereas all training classification
mistakes have low predictability.
Discussion. Intuitively, as depicted in Figure 2(b), low pre-
dictability training data contains mainly two types of in-
stances: (1) borderline instances that are valuable for the
training process; (2) outliers that are located deeper in the
territory of the opposite class. Unlike in this simple example,

EuroMLSys ’22, April 5–8, 2022, RENNES, France Shay Vargaftik and Yaniv Ben-Itzhak

Algorithm 1: Duet training
Duet.fit((X,Y)):
1: Duet.RF.fit(X,Y)
2: pp = Duet.RF.predict_proba(X)
3: pred = Predictability(X,Y,pp) ⊲ Eq. (3)
4:(X’,Y’) = Filter((X,Y),pred)
5: Duet.XGBoost.fit(X’,Y’)
6: return Duet

Algorithm 2: Duet classification
Duet.predict(x):
1: dist = Duet.RF.predict_proba(x)
2: if max(dist)> confidence:
3: return argmax(dist)
4: else
5: return Duet.XGBoost.predict(x)

Algorithm 3: Per-class and global instance selection
Filter((X,Y),pred):
1:classes = Unique(Y)
2:(X’,Y’) = []
3:For i in classes:
4: (X’,Y’).append(Filter_h((X,Y==i),
pred[Y==i],fraction[i]))
5:(X”,Y”),pred”=(X,Y),pred| (x,y) ∉ (X’,Y’)
6:r=fraction[tot]-len((X’,Y’))/len((X,Y))
7:(X’,Y’).append(Filter_h((X”,Y”),pred”,r))
8:return (X’,Y’)

differentiating between these two types is a major research
challenge to date with emerging tools and heuristic solutions
[50]. Outlier detection is out of the scope of our work. Our
goal is not to lose valuable information for the training of
the boosting model, i.e., concepts that the bagging model did
not capture. Thus, we give preference to low predictability
instances that contain both aforementioned types. We rely on
correct parameter tuning of the boosting model to offer good
generalization properties2. In contrast, high predictability in-
stances may be sub-sampled without losing such valuable
information and, in turn, without degrading the ML perfor-
mance of the boosting model.

3 Model
We next overview in detail Duet’s training and classification
and discuss its hyperparameters (marked in bold in Algo-
rithms 1-4). Finally, due to their broad applicability, we focus
on a RF as the bagging DTEM and XGBoost as the boosting
DTEM.

2Indeed, our evaluation indicates that this leads to favorable results for Duet
versus the monolithic models.

Algorithm 4: Predictability-based instance selection
Filter_h((X,Y),pred,C):

1: Bins, Len = Hist((X,Y),pred,nbins)
2: Bin-search for maximum k such that:
3: sum([min(i,k),i∈Len]) ≤ C·len((X,Y))
4: (X’,Y’) = []
5: for B, L in Bins, Len:
6: if L ≤ k:
7: (X’,Y’).append(B)
8: else:
9: (X’,Y’).append(rand(B,k))

10: return (X’,Y’)

3.1 Training
Algorithm 1 describes Duet’s training. It begins with the
training of an RF model (line 1). Since we seek to learn
the easier concepts and admit low resource usage, the RF is
preferred to have trees of limited depth or a limited number
of leaves.

We then use the RF model to classify the training data
and obtain the class distribution vector of each labeled in-
stance (line 2). With the distributions and the correct labels
at hand, we continue to calculate the labeled data instances
predictability by Equation 3 (line 3).

Next, we prepare the training dataset for the XGBoost
model (line 4). Specifically, we choose a subset of the original
training dataset by Algorithm 3 according to the fraction
hyperparameter. Its resulting size is only a fraction of its orig-
inal size, and the training instances are chosen with respect
to their predictability as we describe in Section 3.3. As men-
tioned, we give more emphasis to low predictability instances.
Notice that this subset of the training dataset is not an unbi-
ased sample, as it contains specific instances chosen by their
predictability value (see also §4.1).3

3.2 Classification
Algorithm 2 describes Duet’s classification. First, we classify
the unlabeled instances by the RF model (line 1). Then, we
check if the classification confidence by the RF is greater than
a predefined confidence threshold (i.e., confidence – line
2). As mentioned, even though the RF model is rather simple,
the classification is expected to be correct when requiring
high confidence. Only if the confidence is insufficient (i.e.,
there is a concern that the RF model may be mistaken), the
query is passed to the XGBoost model (that is trained for
such particular situations). In this case, the classification is
determined solely by the XGBoost model, as the classification
by the RF model is not informative (due to its low confidence).

3Another option is to use predictability for unbiased importance sampling.
However, this is not aligned with our goal of having the two classifiers
performing different tasks.

Efficient Multiclass Classification with Duet EuroMLSys ’22, April 5–8, 2022, RENNES, France

3.3 Predictability-based training data selection
There are many sensible ways to use predictability to pick
data instances for the XGBoost model. The best recipe often
depends on the dataset and the hyperparameters of Duet. Next,
we describe the heuristic we develop and implement. We find
it to be robust and work well in practice.

Roughly speaking, we aim to keep representative samples
across all predictability levels of the different classes to avoid
losing unique concepts. For example, we may sample with
lower probability high predictability instances of the same
large class. On the other hand, we may often take all low
predictability instances of a small class.

We do so since we aim to reduce the dataset size with
minimal information loss with respect to the concepts that the
bagging model did not capture but without losing the general
properties and structure of the data.

Algorithm 3 describes how we perform the selection of
the data instances. To that end, we introduce a hyperparam-
eter termed fraction. It is a vector that contains an en-
try for each class and an additional entry termed total.
fraction[total] ∈ [0,1] is a fraction of the original
dataset that we want to use for the training of the XGBoost
model. fraction[i]𝑖∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠 are smaller fractions such
that

∑
𝑖∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠fraction[i]≤fraction[total] stat-

ing what is the minimal fraction offered to each class. For
example, in a 3-class classification problem, if

• fraction[total]=0.06,
• fraction[0]=fraction[1]=fraction[2]=0.01,

then the total training data fraction that will be used to train
the XGBoost model is 6% of the original dataset (X,Y) and
at least min{0.01·len((X,Y)),len((X,Y==i))} is of-
fered to each class 𝑖.

Algorithm 4 describes the sub-routine that is repeatedly
invoked by Algorithm 3. It is invoked for each class indepen-
dently with its fraction and the instances of that particular
class. Then, it is invoked with the remaining fraction and all
yet unpicked instances. Within each such call, instances are
divided into bins according to their predictability. Then, for
each bin, we either take the entire bin or sample from it uni-
formly at random, where the goal is to take roughly the same
number of instances from each bin. Algorithm 4 also includes
the hyperparameter nbins which is the number of bins to
which we divide instances according to their predictability
(line 1). In practice, 10 (our default) appears to work well.

The purpose of such “balanced” selection is to find a com-
promise between class and predictability imbalance via the
fraction hyperparameter. Our default, which appears to
work well in practice, is to set a value of 0 to all individ-
ual classes and subsample only according to predictability.
We do find cases where setting non-zero values to different
classes improves performance, especially in the presence of
considerable class imbalance.

Name Instances Dimention Classes

0 abalone 4024 8 14
1 adult 48842 14 4
2 car 1728 6 4
3 cmc 1473 9 3
4 communities 1994 127 3
5 creditcardfraud 284807 30 2
6 krkopt 28029 6 17
7 letter 20000 16 26
8 mammography 11183 6 2
9 mushroom 8124 22 2
10 seismic 2584 18 2
11 yeast 1484 9 10
12 kddcup99 494021 41 23

Table 1. Evaluation datasets.

Duet Duet - XGBoost only
seismic 0.934984±0.0 0.93421±0.0
mammography 0.989091±0.0 0.987749±0.0
letter 0.95245±0.0 0.9438±0.0
mushroom 0.983131±0.02 0.961593±0.04
car 0.861111±0.01 0.851269±0.01
communities 0.795896±0.02 0.586791±0.05

Table 2. Duet versus Duet’s XGBoost.

Dataset RF XGBoost Duet
seismic 0.922218±0.02 0.888563±0.09 0.934984±0.0
mammography 0.987839±0.0 0.988196±0.0 0.989091±0.0
letter 0.9669±0.0 0.9646±0.0 0.95245±0.0
yeast 0.993935±0.0 0.999327±0.0 1.0±0.0
mushroom 0.896694±0.14 0.898296±0.14 0.983131±0.02
cmc 0.536991±0.03 0.564155±0.02 0.559412±0.02
krkopt 0.151309±0.05 0.301045±0.05 0.251776±0.05
car 0.849587±0.05 0.84031±0.04 0.861111±0.01
abalone 0.268146±0.02 0.277841±0.03 0.272623±0.03
adult 0.576041±0.0 0.576062±0.0 0.569469±0.0
communities 0.817947±0.02 0.817439±0.02 0.795896±0.02
creditcardfraud 0.999301±0.0 0.996812±0.01 0.999357±0.0
kddcup99 0.999773±0.0 0.999822±0.0 0.999848±0.0

Table 3. Macro F1 of Duet vs. monolithic RF and XGBoost.

4 Evaluation
We implement Duet as a fully compatible scikit-learn classi-
fier [7] with 240 lines of code that is available in [43].

We use 13 datasets for our evaluation from the UCI [12]
and Kaggle [26] repositories. To cover different use-cases,
these include datasets from different domains as well as dif-
ferent sizes, number of features, and classes. These are sum-
marized in Table 1

EuroMLSys ’22, April 5–8, 2022, RENNES, France Shay Vargaftik and Yaniv Ben-Itzhak

Dataset Method Fit time [sec] Predict time [sec] Model size [MB]

seismic
RF 1.723±0.02 0.106±0.0 2.96
XGBoost 9.316±0.05 0.090±0.0 0.59
Duet 2.071±0.02 0.102±0.0 0.22

mammography
RF 4.247±0.05 0.207±0.0 2.17
XGBoost 37.605±0.49 0.876±0.04 1.1
Duet 6.083±0.04 0.198±0.0 1.59

letter
RF – – –
XGBoost 2541.0±29.89 95.88±0.67 24.2
Duet 523.59±0.44 31.27±0.92 70.88

yeast
RF 1.323±0.01 0.107±0.0 2.47
XGBoost 19.29±0.05 1.475±0.0 3.05
Duet 4.336±0.03 0.532±0.06 2.19

mushroom
RF 1.938±0.04 0.146±0.0 0.33
XGBoost 24.09±1.47 0.135±0.01 0.33
Duet 3.209±0.05 0.154±0.0 0.38

cmc
RF 6.838±0.04 0.496±0.0 41.71
XGBoost 7.557±0.03 0.595±0.0 1.82
Duet 1.365±0.01 0.081±0.0 0.29

krkopt
RF – – –
XGBoost 1214.59±9.06 124.55±3.15 49.83
Duet 284.33±1.06 112.95±2.71 70.34

car
RF 11.54±0.02 0.886±0.0 30.67
XGBoost 13.90±0.14 0.908±0.02 5.83
Duet 5.663±0.04 0.422±0.05 8.63

abalone
RF – – –
XGBoost 115.35±0.12 8.762±0.02 7.91
Duet 35.32±0.1 8.753±0.05 10.8

adult
RF 387.8±1.99 10.29±0.01 168.09
XGBoost 1735.0±13.54 65.948±0.46 30.93
Duet 150.20±0.34 26.576±0.07 2.62

communities
RF 19.33±0.14 0.622±0.01 16.2
XGBoost 260.17±2.45 1.352±0.03 9.11
Duet 68.148±0.74 0.439±0.04 6.21

creditcardfraud
RF 352.95±16.07 7.947±0.11 2.85
XGBoost 5449.3±114.07 17.990±0.3 0.83
Duet 807.41±84.75 10.422±0.89 2.78

kddcup99
RF – – –
XGBoost – – –
Duet 349.12±4.37 40.552±0.0 19.99

Table 4. Duet vs. monolithic RF and XGBoost. System per-
formance comparison over Raspberry Pi 3 B+.

We are interested in the ML and system performance of
Duet both on standard commodity servers and on weaker edge
device with memory and compute constraints. Accordingly,
we conducted our experiments over two different platforms:
(1) a t2.2xlarge AWS EC2 instance with 8 vCPUs and
32 GB RAM running Ubuntu 16.04 LTS; (2) Raspberry Pi
3 B+ with a 1.4 GHz 64-bit quad-core ARM Cortex-A53
processor, 512 KB shared L2 cache, and 1GB SDRAM [33].
All classifiers are configured to run on a single core for fair
training and classification time comparison.

For all classifiers, we perform a grid-search with 5-fold
cross-validation for parameter tuning. While both RF and
XGBoost have well-established hyperparameters, Duet intro-
duces new hyperparameters we tune: the data fraction vector
(fraction) and the confidence threshold (confidence).
Both parameters are fairly easily tunable. Common values
we find to work well in practice are fraction[total]∈
[0.1, 0.25], fraction[i]= 𝛼 · fraction[total]#𝑐𝑙𝑎𝑠𝑠𝑒𝑠 , 𝛼 ∈ [0, 1)
for all i, and confidence ∈ [0.7, 0.99]. We also find that

Dataset Model Fit time [sec] Predict time [sec] Model size [MB]

seismic
RF 0.2250±0.0 0.016±0.0 2.98
XGBoost 1.4255±0.01 0.02±0.0 0.58
Duet 0.2611±0.0 0.015±0.0 0.23

mammography
RF 0.6671±0.01 0.029±0.0 2.18
XGBoost 5.9221±0.08 0.150±0.0 1.09
Duet 0.9052±0.01 0.027±0.0 1.60

letter
RF 20.078±0.16 1.2368±0.01 1236.19
XGBoost 327.78±0.8 11.116±0.5 24.18
Duet 80.818±0.39 3.6092±0.18 70.88

yeast
RF 0.1599±0.0 0.014±0.0 2.48
XGBoost 3.4518±0.01 0.096±0.0 3.05
Duet 0.8773±0.01 0.036±0.0 2.19

mushroom
RF 0.2125±0.01 0.019±0.0 0.34
XGBoost 3.3613±0.23 0.035±0.01 0.32
Duet 0.3585±0.01 0.02±0.0 0.39

cmc
RF 0.8387±0.0 0.075±0.0 41.78
XGBoost 1.3554±0.01 0.039±0.0 1.82
Duet 0.1458±0.0 0.01±0.0 0.30

krkopt
RF 17.169±0.23 1.1869±0.09 3328.46
XGBoost 213.27±1.59 10.622±0.29 49.83
Duet 54.129±0.42 9.9678±0.15 70.28

car
RF 1.2056±0.01 0.131±0.01 30.79
XGBoost 3.0606±0.06 0.056±0.0 5.83
Duet 1.2725±0.02 0.036±0.0 8.85

abalone
RF 5.8190±0.01 0.310±0.0 320.79
XGBoost 18.759±0.11 0.6339±0.04 7.91
Duet 6.2120±0.06 0.734±0.01 10.81

adult
RF 32.742±0.07 1.4587±0.0 168.20
XGBoost 235.86±0.76 4.46720±0.08 30.93
Duet 19.257±0.08 1.7114±0.03 2.62

communities
RF 3.2046±0.03 0.083±0.01 16.26
XGBoost 44.454±0.55 0.1127±0.0 9.11
Duet 14.282±0.15 0.0446±0.0 6.38

creditcardfraud
RF 96.382±4.12 0.3871±0.02 2.86
XGBoost 654.51±21.18 2.93963±0.11 0.83
Duet 204.11±10.71 0.53967±0.06 2.79

kddcup99
RF 22.176±0.27 1.4043±0.0 17.04
XGBoost 5320.6±28.86 74.7549±2.47 5.37
Duet 83.702±3.22 1.5192±0.01 22.62

Table 5. Duet vs. monolithic RF and XGBoost. System perfor-
mance comparison over t2.2xlarge AWS EC2 instance.

taking sensible monolithic XGBoost hyperparameters and
using them in Duet works well.

4.1 Is it really a Duet?
Before comparing Duet to monolithic RF and XGBoost mod-
els, we verify that often it is indeed the combination of both
RF and XGBoost in Duet that yields the best benefits. Clearly,
in some cases, Duet can rely purely on the XGBoost model
and achieve similar ML capabilities with less memory con-
sumption. Namely, the memory consumed by the RF model
can be released after the XGBoost model is trained, and all
classification queries can be forwarded directly to the XG-
Boost model. Often, we find this particular setting to be un-
favorable. Using predictability purely as a sub-sampling ap-
proach is not always consistent and occasionally admits a
higher variance in classification accuracy. It often does not
allow a meaningful under-sampling factor without degrading
ML performance. We illustrate this in Table 2. It shows how
the complete Duet model is often more accurate than using

Efficient Multiclass Classification with Duet EuroMLSys ’22, April 5–8, 2022, RENNES, France

0.0 0.5 1.0

Fraction

0.97

0.98

Accuracy

0.0 0.5 1.0

Fraction

0

2

S
ec

on
d

s

Training time

0.0 0.5 1.0

Fraction

0.005

0.010

S
ec

on
d

s

Classification time

0.0 0.5 1.0

Fraction

2.5

5.0

7.5

M
B

Model size

0.0 0.5 1.0

Fraction

0

5

10

%

XGBoost test data fraction

0.0 0.5 1.0

Confidence

0.97

0.98

0.0 0.5 1.0

Confidence

1.3

1.4

S
ec

on
d

s
0.0 0.5 1.0

Confidence

0.000

0.025

0.050

S
ec

on
d

s

0.0 0.5 1.0

Confidence

7.5

8.0

M
B

0.0 0.5 1.0

Confidence

0

50

100

%

(a) car

0.0 0.5 1.0

Fraction

0.6

0.8

Accuracy

0.0 0.5 1.0

Fraction

0

100

200

S
ec

on
d

s

Training time

0.0 0.5 1.0

Fraction

0

10

20

S
ec

on
d

s

Classification time

0.0 0.5 1.0

Fraction

40

60

80

M
B

Model size

0.0 0.5 1.0

Fraction

0

50

100

%

XGBoost test data fraction

0.0 0.5 1.0

Confidence

0.68

0.70

0.72

0.0 0.5 1.0

Confidence

57.5

60.0

62.5

S
ec

on
d

s

0.0 0.5 1.0

Confidence

0

10

S
ec

on
d

s

0.0 0.5 1.0

Confidence

65.0

67.5

M
B

0.0 0.5 1.0

Confidence

0

50

100

%

(b) krkopt

0.0 0.5 1.0

Fraction

0.85

0.90

Accuracy

0.0 0.5 1.0

Fraction

0.25

0.30

0.35

S
ec

on
d

s

Training time

0.0 0.5 1.0

Fraction

0.0025

0.0030

S
ec

on
d

s

Classification time

0.0 0.5 1.0

Fraction

0.175

0.200

0.225
M

B

Model size

0.0 0.5 1.0

Fraction

0

50%

XGBoost test data fraction

0.0 0.5 1.0

Confidence

0.85

0.90

0.0 0.5 1.0

Confidence

0.26

0.27

0.28

S
ec

on
d

s

0.0 0.5 1.0

Confidence

0.0020

0.0025

0.0030

S
ec

on
d

s

0.0 0.5 1.0

Confidence

0.21

0.22

0.23

M
B

0.0 0.5 1.0

Confidence

0

50

100

%
(c) seismic

0.0 0.5 1.0

Fraction

0.95

1.00
Accuracy

0.0 0.5 1.0

Fraction

0

1

2

S
ec

on
d

s

Training time

0.0 0.5 1.0

Fraction

0.00

0.02

S
ec

on
d

s

Classification time

0.0 0.5 1.0

Fraction

0

1

2

M
B

Model size

0.0 0.5 1.0

Fraction

0

20

40

%

XGBoost test data fraction

0.0 0.5 1.0

Confidence

0.95

1.00

0.0 0.5 1.0

Confidence

0.90

0.95

S
ec

on
d

s

0.0 0.5 1.0

Confidence

0.00

0.05

S
ec

on
d

s

0.0 0.5 1.0

Confidence

2.2

2.3

M
B

0.0 0.5 1.0

Confidence

0

50

100

%

(d) yeast

0.0 0.5 1.0

Fraction

0.99970

0.99975

Accuracy

0.0 0.5 1.0

Fraction

0

2000

4000

S
ec

on
d

s

Training time

0.0 0.5 1.0

Fraction

1.80

1.85

S
ec

on
d

s

Classification time

0.0 0.5 1.0

Fraction

16

18

20

M
B

Model size

0.0 0.5 1.0

Fraction

0.00

0.05

%

XGBoost test data fraction

0.0 0.5 1.0

Confidence

0.99970

0.99975

0.0 0.5 1.0

Confidence

72.5

75.0

77.5

S
ec

on
d

s

0.0 0.5 1.0

Confidence

0

50

S
ec

on
d

s

0.0 0.5 1.0

Confidence

20

21

M
B

0.0 0.5 1.0

Confidence

0

50

100

%

(e) kddcup99

Figure 3. The effect of Fraction and confidence parameters on Duet’s performance.

EuroMLSys ’22, April 5–8, 2022, RENNES, France Shay Vargaftik and Yaniv Ben-Itzhak

only the resulting XGBoost model. It is worth noting that in
our tests, we did not encounter an example in which using
only the XGBoost model outperformed the complete Duet
model in terms of accuracy in a non-negligible manner.

4.2 Duet vs. monolithic models
We evaluate Duet over Raspberry Pi 3 B+. It consists of a 1.4
GHz 64-bit quad-core ARM Cortex-A53 processor, 512 KB
shared L2 cache, and 1GB SDRAM [33]. Table 4 summarises
the results. It is evident how Duet often offers a better tradeoff
between resource usage and classification accuracy.

On a more general note, RF often suffers from a large
memory footprint (e.g., cmc, communities) and XGBoost
from long training and classification times (e.g., letter, adult,
creditcardfraud). Duet significantly reduces all – up to 11.5×,
7× and 143× for the training time, classification time, and the
memory footprint, respectively. More rarely (e.g., krkopt), the
classification time of Duet is competitive to that of XGBoost.
This happens when most classification queries are forwarded
to the XGBoost model of Duet. Moreover, RF (4 datasets) and
XGBoost (1 dataset) were not able to complete the training
due to insufficient resources (marked with “–”). In particular,
only Duet completed training over the kddcup99 dataset.

We also evaluated Duet over t2.2xlarge AWS EC2
instance with 8 vCPUs and 32 GB RAM running Ubuntu
16.04 LTS. Similarly, Duet significantly reduces the training
time up to 63×, classification time up to 42× , and the memory
footprint up to 47×. For example, for seismic, Duet achieves
the best accuracy while its classification time is the fastest, its
training time is 5.4× faster that of an XBGoost model and its
memory footprint is 12.9× smaller than that of a RF.

4.3 How the fraction and confidence parameters affect
Duet performance?

In Figure 3 we perform a parameter sweep over Duet parame-
ters to illustrate how these affect ML and system performance.

We display the results over 5 datasets. While some results
are more noisy than others, there are several evident trends
that fall in line with the intuition. The accuracy increases
with the dataset fraction that is forwarded to the training
of the fine-grained model. For most datasets, this fraction
can be quite small to achieve maximal accuracy (e.g, 10-
25%). The confidence level for a valid classification by the
coarse-grained model also admits sweet spots, usually in the
range 0.6-0.95 yet again indicating that the confidence level
is informative.

As for the system performance, as expected, it is the general
trend that training times, classification times and memory
footprint increase with the fraction and confidence. This is
expected since larger fraction means longer training for the
fine-grained model whereas higher confidence means that
more test instances are classified by first the coarse-grained
model and then by the fine-grained model due to insufficient
classification confidence by the coarse-grained model.

5 Related work
In this section, we briefly overview most closely related work.
RADE. [44] is mostly related to our work and shares the idea
of having a smaller model followed by expert models that
are trained using only subsets of the data. However, RADE is
designed and optimized for anomaly detection and does not
support multiclass classification.
Instance hardness. Instance hardness (IH) was recently pre-
sented in [39] and later extended in [8, 19, 37, 38, 46, 49].
These works mainly target class imbalance. IH and our pre-
dictability measure are different concepts with different goals.
Cascading models. Cascading models are used for object
detection (e.g., image, video) [13, 36, 45], ranking [22], anom-
aly detection [27] and medicine [20, 47]. The main target of
cascading models is fast classification at the price of resource-
consuming training and increased memory footprint.
Stacking. Stacking [4, 17, 41, 48] differs from bagging and
boosting by considering heterogeneous weak learners and
combining them using a meta-model. Duet inherently differs
from stacking where the 𝑖 + 1’th model is trained using the
classification output of the 𝑖’th model.
Feature selection. [11, 23, 40] aim at selecting a subset of
features that are sufficient for distinguishing instances that
belong to different classes (orthogonal to Duet).
Sampling. To reduce training complexity one may use sam-
pling [24, 29, 32]. As discussed in Section 4.1, these are
inherently different than our use of predictability– i.e., to
build a boosting model that complements the bagging model
and not replaces it. Also, these techniques are orthogonal to
any classifier and hence applicable to Duet.
DTEM optimization. Previous work suggested approaches
to tackle the drawbacks of bagging [2, 6, 42] and boosing [1,
9, 10, 21, 28, 31, 34, 35] DTEMs. Duet is mostly orthogonal
to these, and we may leverage them for Duet’s two classifiers.

6 Conclusions
We presented Duet, a DTEM-based classifier utilizing the
power of data instance predictability. By combining the advan-
tages of bagging and boosting DTEMs, Duet often achieves a
better tradeoff between accuracy and system performance in
terms of memory footprint, training time, and classification
time compared to monolithic DTEMs.

Evaluation results indicate that Duet’s training and clas-
sification times are up to 63× and 42× faster than that of a
monolithic XBGoost model and its memory footprint is up
to 47× smaller than that of a monolithic RF. Moreover, using
a Raspberry Pi device, we have shown how datasets whose
training failed with standard monolithic methods succeeded
with Duet, widening the set of classification tasks that can be
executed of resource limited edge devices.

Duet’s scikit-learn compatible implementation and further
details can be found in https://research.vmware.com/projects/
efficient-machine-learning-classification.

https://research.vmware.com/projects/efficient-machine-learning-classification
https://research.vmware.com/projects/efficient-machine-learning-classification

Efficient Multiclass Classification with Duet EuroMLSys ’22, April 5–8, 2022, RENNES, France

References
[1] Ron Appel, Thomas Fuchs, Piotr Dollár, and Pietro Perona. 2013.

Quickly boosting decision trees–pruning underachieving features early.
In International conference on machine learning. 594–602.

[2] Nima Asadi, Jimmy Lin, and Arjen P De Vries. 2014. Runtime opti-
mizations for tree-based machine learning models. IEEE Transactions
on Knowledge and Data Engineering 26, 9 (2014), 2281–2292.

[3] L Breiman. 1996. ARCING classifiers (Technical report). University
of California, Department of Statistics (1996).

[4] Leo Breiman. 1996. Stacked regressions. Machine learning 24, 1
(1996), 49–64.

[5] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001),
5–32.

[6] James Browne, Tyler Tomita, Disa Mhembere, Randal Burns, and
Joshua Vogelstein. 2018. Forest Packing: Fast, Parallel Decision Forests.
arXiv preprint arXiv:1806.07300 (2018).

[7] Lars Buitinck, Gilles Louppe, Mathieu Blondel, et al. 2013. API design
for machine learning software: experiences from the scikit-learn project.
In ECML PKDD Workshop: Languages for Data Mining and Machine
Learning. 108–122.

[8] George DC Cavalcanti and Rodolfo JO Soares. 2020. Ranking-based
instance selection for pattern classification. Expert Systems with Appli-
cations 150 (2020), 113269.

[9] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining. ACM, 785–794.

[10] Fang Chu and Carlo Zaniolo. 2004. Fast and light boosting for adap-
tive mining of data streams. In Pacific-Asia conference on knowledge
discovery and data mining. Springer, 282–292.

[11] Manoranjan Dash and Huan Liu. 1997. Feature selection for classifica-
tion. Intelligent data analysis 1, 1-4 (1997), 131–156.

[12] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml

[13] Pedro F Felzenszwalb, Ross B Girshick, and David McAllester. 2010.
Cascade object detection with deformable part models. In 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition. IEEE, 2241–2248.

[14] Yoav Freund, Robert E Schapire, et al. 1996. Experiments with a new
boosting algorithm. In icml, Vol. 96. Citeseer, 148–156.

[15] Jerome H Friedman. 2001. Greedy function approximation: a gradient
boosting machine. Annals of statistics (2001), 1189–1232.

[16] Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006. Extremely
randomized trees. Machine learning 63, 1 (2006), 3–42.

[17] Magdalena Graczyk, Tadeusz Lasota, Bogdan Trawiński, and Krzysztof
Trawiński. 2010. Comparison of bagging, boosting and stacking ensem-
bles applied to real estate appraisal. In Asian conference on intelligent
information and database systems. Springer, 340–350.

[18] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. Unsu-
pervised learning. In The elements of statistical learning. Springer,
485–585.

[19] Ahmedul Kabir, Carolina Ruiz, and Sergio A Alvarez. 2018. Mixed
bagging: A novel ensemble learning framework for supervised classifi-
cation based on instance hardness. In 2018 IEEE International Confer-
ence on Data Mining (ICDM). IEEE, 1073–1078.

[20] Asha Gowda Karegowda, MA Jayaram, and AS Manjunath. 2012.
Cascading k-means clustering and k-nearest neighbor classifier for
categorization of diabetic patients. International Journal of Engineering
and Advanced Technology 1, 3 (2012), 147–151.

[21] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly
efficient gradient boosting decision tree. In Advances in Neural Infor-
mation Processing Systems. 3146–3154.

[22] Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan.
2015. Cascading bandits: Learning to rank in the cascade model. In

International Conference on Machine Learning. 767–776.
[23] Nojun Kwak and Chong-Ho Choi. 2002. Input feature selection for

classification problems. IEEE transactions on neural networks 13, 1
(2002), 143–159.

[24] Rui Leite and Pavel Brazdil. 2004. Improving progressive sampling via
meta-learning on learning curves. In European Conference on Machine
Learning. Springer, 250–261.

[25] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. 2014. Scaling Distributed Machine Learning with the Parameter
Server.. In OSDI, Vol. 14. 583–598.

[26] Machine Learning Group - ULB. 2013. Credit Card Fraud Detec-
tion Dataset. https://www.kaggle.com/isaikumar/creditcardfraud.
[Online; accessed 26-August-2019].

[27] Amuthan Prabakar Muniyandi, R Rajeswari, and R Rajaram. 2012.
Network anomaly detection by cascading k-Means clustering and C4.
5 decision tree algorithm. Procedia Engineering 30 (2012), 174–182.

[28] Matthew Olson. 2017. JOUSBoost: An R Package for Improving
Machine Learning Classifier Probability Estimates.

[29] Srinivasan Parthasarathy. 2002. Efficient progressive sampling for
association rules. In 2002 IEEE International Conference on Data
Mining, 2002. Proceedings. IEEE, 354–361.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python . Journal of Machine
Learning Research 12 (2011), 2825–2830.

[31] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev,
Anna Veronika Dorogush, and Andrey Gulin. 2018. CatBoost:
unbiased boosting with categorical features. In Advances in Neural
Information Processing Systems. 6638–6648.

[32] Foster Provost, David Jensen, and Tim Oates. 1999. Efficient progres-
sive sampling. In Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 23–32.

[33] Raspberry Pi 3. 2018. Model B+. [Online; accessed 7-September-
2019].

[34] Abolfazl Ravanshad. 2018. Medium Corporation. Gradient Boosting
vs Random Forest. [Online; accessed 7-September-2019].

[35] Mojtaba Seyedhosseini, António RC Paiva, and Tolga Tasdizen. 2011.
Fast adaboost training using weighted novelty selection. In The Inter-
national Joint Conference on Neural Networks. IEEE, 1245–1250.

[36] Haichen Shen, Seungyeop Han, Matthai Philipose, and Arvind Krishna-
murthy. 2017. Fast video classification via adaptive cascading of deep
models. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 3646–3654.

[37] William C Sleeman IV and Bartosz Krawczyk. 2019. Bagging Using
Instance-Level Difficulty for Multi-Class Imbalanced Big Data Classi-
fication on Spark. In 2019 IEEE International Conference on Big Data
(Big Data). IEEE, 2484–2493.

[38] Michael R Smith and Tony Martinez. 2016. A comparative evaluation
of curriculum learning with filtering and boosting in supervised classi-
fication problems. Computational Intelligence 32, 2 (2016), 167–195.

[39] Michael R Smith, Tony Martinez, and Christophe Giraud-Carrier. 2014.
An instance level analysis of data complexity. Machine learning 95, 2
(2014), 225–256.

[40] Jiliang Tang, Salem Alelyani, and Huan Liu. 2014. Feature selec-
tion for classification: A review. Data classification: Algorithms and
applications (2014), 37.

[41] Kai Ming Ting and Ian H Witten. 1997. Stacking bagged and dagged
models. (1997).

[42] Brian Van Essen, Chris Macaraeg, Maya Gokhale, and Ryan Prenger.
2012. Accelerating a random forest classifier: Multi-core, GP-GPU,
or FPGA?. In 20th International Symposium on Field-Programmable
Custom Computing Machines. IEEE, 232–239.

http://archive.ics.uci.edu/ml
https://www.kaggle.com/isaikumar/creditcardfraud

EuroMLSys ’22, April 5–8, 2022, RENNES, France Shay Vargaftik and Yaniv Ben-Itzhak

[43] Shay Vargaftik and Yaniv Ben-Itzhak. 2022. Duet’s classifier (v1.0)
- scikit-learn compatible. https://research.vmware.com/projects/
efficient-machine-learning-classification.

[44] Shay Vargaftik, Isaac Keslassy, Ariel Orda, and Yaniv Ben-Itzhak. 2021.
Rade: Resource-efficient supervised anomaly detection using decision
tree-based ensemble methods. Machine Learning 110, 10 (2021), 2835–
2866.

[45] Paul Viola, Michael Jones, et al. 2001. Rapid object detection using a
boosted cascade of simple features. CVPR (1) 1, 511-518 (2001), 3.

[46] Felipe N Walmsley, George DC Cavalcanti, Dayvid VR Oliveira,
Rafael MO Cruz, and Robert Sabourin. 2018. An ensemble gener-
ation method based on instance hardness. In 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE, 1–8.

[47] Yefeng Wang and Jon Patrick. 2009. Cascading classifiers for named
entity recognition in clinical notes. In Proceedings of the workshop
on biomedical information extraction. Association for Computational
Linguistics, 42–49.

[48] David H Wolpert. 1992. Stacked generalization. Neural networks 5, 2
(1992), 241–259.

[49] Jianjun Zhang, Ting Wang, Wing WY Ng, Shuai Zhang, and Chris D
Nugent. 2019. Undersampling Near Decision Boundary for Imbalance
Problems. In 2019 International Conference on Machine Learning and
Cybernetics (ICMLC). IEEE, 1–8.

[50] Yue Zhao, Zain Nasrullah, and Zheng Li. 2019. Pyod: A python toolbox
for scalable outlier detection. arXiv preprint arXiv:1901.01588 (2019).

https://research.vmware.com/projects/efficient-machine-learning-classification
https://research.vmware.com/projects/efficient-machine-learning-classification

	Abstract
	1 Introduction
	2 Predictability
	2.1 Distance functions
	2.2 Example

	3 Model
	3.1 Training
	3.2 Classification
	3.3 Predictability-based training data selection

	4 Evaluation
	4.1 Is it really a Duet?
	4.2 Duet vs. monolithic models
	4.3 How the fraction and confidence parameters affect Duet performance?

	5 Related work
	6 Conclusions
	References

