
BoGraph: Structured Bayesian Optimization From

Logs for Expensive Systems with Many Parameters

Sami Alabed

University of Cambridge, UK

The Alan Turing Institute

sa894@cam.ac.uk

Eiko Yoneki

University of Cambridge, UK

eiko.yoneki@cl.cam.ac.uk

Abstract

Current auto-tuners struggle with computer systems due

to their large complex parameter space and high evaluation

cost. We propose BoGraph, an auto-tuning framework that

builds a graph of the system components before optimizing it

using causal structure learning. The graph contextualizes the

system via decomposition of the parameter space for faster

convergence and handling of many parameters. Furthermore,

BoGraph exposes an API to encode experts’ knowledge of the

system via performance models and a known dependency

structure of the components. We evaluated BoGraph via a

hardware design case study achieving 5𝑥 − 7𝑥 improvement

in energy and latency over the default in a variety of tasks.

ACM Reference Format:

Sami Alabed and Eiko Yoneki. 2022. BoGraph: Structured Bayesian

Optimization From Logs for Expensive Systems with Many Param-

eters. In 2nd European Workshop on Machine Learning and Systems
(EuroMLSys ’22), April 5–8, 2022, RENNES, France. ACM, New York,

NY, USA, 9 pages. https://doi.org/10.1145/3517207.3526977

1 Introduction

Computer systems facilitate the execution of a wide range

of diverse workloads by exposing tunable configurations

to meet users’ demands. Examples of these configurations

are hardware designs [12] and database knobs [51]. Tuning

systems configuration is tedious due to the many parame-

ters involved and the long evaluation time. For example, in

our case study on hardware design optimization, there are

2
64

unique designs. This complexity necessitates for auto-

tuners to aid practitioners. However, current research into

auto-tuners focuses on optimizing neural network hyperpa-

rameters [8, 40, 48] and encounters significant challenges

when applied to tuning computer systems specifically.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

EuroMLSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9254-9/22/04.

https://doi.org/10.1145/3517207.3526977

1.1 BoGraph

BoGraph builds on Structured Bayesian Optimization (SBO)

[16] principles to contextualize the system and finds optimal

system configurations in a few trials. SBO requires experts

to encode their system knowledge using hand-crafted prob-

abilistic models. BoGraph differentiates itself from previous

works by simplifying the process of using SBO. It discov-

ers probabilistic models from logs using its novel structure

discovery pipeline. BoGraph’s API allows experts to encode

contextual knowledge of the system, such as models or de-

pendencies between components, for a more robust and

interpretable auto-tuner. Next, we summarize the challenges

BoGraph targets in optimizing computer systems.

1.2 Challenges in systems optimization

1.2.1 Evaluation is slow and expensive. Evaluating a

single configuration on a system takes several minutes (see

Figure 5a) to several hours [20, 36, 51]. This is costly espe-

cially when optimizing cloud instances [2] or databases [51].

Hence, the need to find optimized configurations with the

fewest evaluations. As a result, tuners that rely on many iter-

ations are too costly to use, e.g., reinforcement learning [49],

random search [8], evolutionary search [3], hill-climbing

[4], or population-search [29]. BoGraph leverages all avail-

able information from the system logs and captures it using

Gaussian Process (GP) [42] a sample-efficient model to con-

textualize the system. Additionally, it allows incorporating

existing experts’ knowledge to speed up the process further.

1.2.2 Large number of parameters. Using GPs comes at

the cost of increased computational complexity and difficulty

to scale to 𝐷 > 10 parameters without sacrificing their effi-

ciency [34]. Standard Bayesian Optimization [48] methods

often rely on GPs, which do not scale to many parameters.

BoGraph enables the GPs to scale by using the system’s de-

pendency graph to naturally reduce each model dimension

as illustrated in Figure 1.

1.2.3 Complex parameters dependency. Computer sys-

tems parameters often have a complex relationship; a param-

eter can depend on another parameter, e.g. the memory’s

structure and size. This relationship is non-linear and diffi-

cult to learn using traditional methods. BoGraph exposes an

API for experts to encode a parametric probabilistic model

that captures parameters’ complex relationship.

https://orcid.org/0000-0001-8716-526X
https://doi.org/10.1145/3517207.3526977
https://doi.org/10.1145/3517207.3526977


EuroMLSys ’22, April 5–8, 2022, RENNES, France Sami Alabed and Eiko Yoneki

X1 X2 X3 X4 X5

Y

(a) The model has to consider

all the parameters jointly.

X1 X2 X3 X4 X5

Y

Z2Z1

(b) Decomposition reduces the

effective dimensions naturally.

Figure 1. The structure reduces the effective dimensions.

1.2.4 Designing bespokemodels is complicated. Hand-

crafting models that capture the system’s complexity re-

quires system and machine learning expertise. Furthermore,

validating and evaluating the models is a trial-and-error

process. Making tuners that rely on expert models such as

BOAT [16] and Causal Bayesian Optimization [1] difficult

to use. BoGraph allows encoding models if they exist, and

it provides a pipeline that learns these models if necessary.

It captures statistical dependency between parameters and

system metrics then uses GPs to model their interactions.

1.3 Contributions

We utilized BoGraph to optimize the design space (≈ 2
64
) of

an accelerator simulator, gem5-Aladdin [24, 47]. BoGraph

learned the system’s components dependencies from logs,

then modeled them using a graph of probabilistic models.

BoGraph found configurations in twenty iterations that took

the next best auto-tuner a hundred iterations. Moreover,

while improving the energy-latency utilization by 5−7𝑥 over

the default, no other method came close to its performance.

We summarize our contributions as follows:

• An auto-tuner for computer systems that handle many

parameters and find optimal configurations quickly.

• ASBO framework automatically learns a graph of prob-

abilistic models from the system’s logs.

• An API for experts to express the system’s dependen-

cies or encode probabilistic models of its components.

• Optimized all the accelerator design choices in gem5-

Aladdin and improved energy-latency by 5 − 7x.

2 Background

2.1 Bayesian optimization

Bayesian Optimization (BO) [45] is an iterative sample-

efficient method to optimize configurations. Formulated as

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝛼 (M(𝑓 )), where 𝑥∗ is the optimal configura-

tion, 𝛼 is the acquisition function,M is a probabilistic model

of the system, and 𝑓 is the system. Its efficiency comes from

generating samples usingM that 𝛼 optimizes to find config-

urations that improve the system without direct interaction

with it. The choice ofM and 𝛼 directly impact the required

evaluations to find optimal configurations.

Known  
Structure

Optimization 
Objectives

Configurations
Space

Structure  
Discovery

DAG  
Model

Samplers

Optimized  
Configuration Logs

BoGraph

M
O
D
ELLIN

G
PR

O
C
ESS

O
PTIM

IZIN
G

SAM
PLESBoTorch

Acquisition  
Function

SYSTEM
EVALU

ATIO
N

System

Expert

Figure 2. BoGraph’s optimization loop. The expert provides spec-

ifications of the problem. Then, BoGraph learns a system structure

from the logs and combines expert knowledge to build a proba-

bilistic model. Finally, it generates samples from the model and

optimizes them to propose optimized configurations to the system.

2.2 Gaussian Process

Gaussian Process (GP) [42] is a flexible sample-efficient

model commonly used in BO. GP captures the impact of

the configurations against the objective in the mean func-

tion and co-variance in its kernel. In practice, GP struggles

with problems that have 𝐷 > 10 [53] as it scales cubically to

the data and dimensions. Its runtime requires an expensive

matrix inversion operation for training and sampling, hence

its scalability issues. The computational complexity of the

GP renders it ineffective for high-dimensional problems.

2.3 Probabilistic DAG

BoGraph models the system using a directed-acyclic-graph

(DAG), where the nodes are probabilistic models that capture

a component of the system, and the edges are the conditional

dependency between the models. This representation, a DAG

of probabilistic models, is known as Bayesian Network [31].

Bayesian Network has the advantage of factorizing the joint

distribution of a node into a local distribution that depends

only on the parent: 𝑃 (𝑋 ;𝐺) = ∏𝑝

𝑗=𝑖
𝑃 (𝑋𝑖 |𝑋𝑝𝑎𝑟𝑒𝑛𝑡 (𝑖 ) ) where

𝑋𝑖 is the ith node in the graph and parent(i) is the direct par-
ent of the node. Nodes factorization circumvents the curse of
dimensionality and allows each node to scale independently.

3 BoGraph Framework

BoGraph is an auto-tuning framework for systems with

many configurations. It builds on Structured Bayesian Opti-

mization (SBO) [16] by utilizing contextual knowledge to con-

verge quickly. BoGraph novelty is to allow a hybrid method

for injecting expert knowledge into the system as well as

learning system structure from logs. Using its pipeline, it

identifies statistical links between the system components

and uses them to build a system’s probabilistic DAG.



BoGraph: Structured Bayesian Optimization From Logs for Expensive Systems with Many Parameters EuroMLSys ’22, April 5–8, 2022, RENNES, France

Structure Learning

Sy
st
em

M
et
ric

s
O
bj
ec
tiv

es

EXP Cache  
Line Sz CPU ... Power

E1 -0.26 -0.80 ... 14800

E2 -1.39 -0.81 ... 12300

... ... ... ... ...

En L2n CPUn ... Powern

A

C

Prune 
Group 

Standardize

B

Pa
ra
m
s

Cache
Line Sz

Enable
 L2

Cycle
Time

Clk
Domain

AVG
PowerSeconds

EDP

CPU

Expert 
Learned

Sy
st

em
 lo

gs

# number of prefetches that crossed the page
system.cpu.icache.prefetcher.pfSpanPage 5852
# Cycle average of tags in use
system.l2.tags.tagsinuse 7674.85
# Total number of bytes read from DRAM
system.mem_ctrls.bytesReadDRAM 3151
... 1000 additional metrics

Figure 3. A) A snippet of gem5’s (the environment) logs. B) The

logs after summarizing and grouping. C) The structure resulted by

calculating a statistical correlation between components (respecting

parameters-component causality) and applying the expert-defined

edges (the entire graph is too large for the paper).

Figure 2 shows BoGraph’s main components. The expert

encodes any knowledge of the system and the target ob-

jectives. Then, BoGraph scans the system logs to learn the

statistical dependency of the system’s components. Next, it

combines the expert’s knowledge with the learned depen-

dency producing a probabilistic DAG. Finally, it suggests

configurations to evaluate by generating many samples from

the model and optimizing them using an acquisition func-

tion. Its modular design facilitates the use of any sampler and

acquisition functions, with BoTorch [6] being the default.

3.1 Structure discovery from logs

BoGraph’s first component is the structure discovery process

shown in Figure 3 that learns a dependency DAG from the

system logs. The pipeline first summarizes the logs, then

discovers the statistical dependency using structure learning

[31, 56], and finally connects any expert-defined edges to

produce a dependency DAG of the system components.

Summarizing the logs. Computer systems generate logs

used for monitoring and debugging by experts [9], BoGraph

uses the logs to learn components dependencies. However,

the logs need to be summarized first as there are often many

log entries causing the curse of dimensionality. For example,

in the case study described in section 4, gem5-Aladdin reports

more than 1000 log entry (Figure 3A), BoGraph pipeline

summarizes them to 7 entries (Figure 3B).

Preprocessing. First, BoGraph removes uninformative met-

rics by pruning ones with low variance between executions.

Then, they are standardized to ensure that different measur-

ing units do not skew the learning algorithm. Then, BoGraph

exploits the structured property of logs to summarize them.

The logging protocol encodes where the log was generated in

the system [21, 55]. For example, in the case study on gem5,

the structure is Component.SubComponent.Measurement, as
shown in Figure 3A, BoGraph groups all measurements un-

der SubComponent in one group as they influence the same

component in the system, then they are compressed into

a single statistic using Factor Analysis (FA) [30]. This com-

pression works because logs generated at the SubComponent
level are dependent on each other. The user can decide on

the granularity of the grouping based on their need. A fine

granularity is helpful to understand the system, but it is more

expensive to evaluate. We used the highest level of granular-

ity which mapped gem5 to six main categories: L2, Datapath,

Mem Ctrls, Membus, Tol2Bus, and CPU. This process applies

to all system logs, including previous system evaluations. At

the end of this stage, BoGraph produces a summary of the

logs as seen in Figure 3B for the structure learning algorithm.

3.2 Structure learning

Defining systems’ structure is an error-prone process; hence

the need to learn it from data, an active research area in the

Bayesian community [44]. These methods propose several

DAGs and score them based on a trade-off between data fit

and the complexity of the graph. BoGraph uses a structure

learning algorithm, NoTears [56]. NoTears approximates the

DAG score using a differentiable function, then minimizes

its error, which is easily parallelizable on GPUs [7]. It is

simple to extend BoGraph with other structure learning al-

gorithms by implementing the BoGraph’s StructureLearning

interface. We encode a set of restrictions in these algorithms

that ensures the system’s parameters are not allowed to have

parents, and the objectives nodes are not allowed to have

children to ensure the causal flow of the optimization task.

Then apply any expert-defined edges resulting in Figure 3C.

Optionally, BoGraph takes an update scheduler that decides

when to perform structure learning. By default, it performs

structure learning every quarter of the optimization budget.



EuroMLSys ’22, April 5–8, 2022, RENNES, France Sami Alabed and Eiko Yoneki

 
Enable 

 L2

Cache 
Size

*Gaussian Process 
models the system 
metrics

Avg Power* EDP**

CPU* **[Optional] 
Expert's model 
of the objective 

Figure 4. BoGraph maps the node in the structure to probabilistic

models such as GPs or expert’s models, creating probabilistic DAG.

Algorithm 1 Sampling the probabilistic DAG

Input: sampler 𝑠 , DAG model𝑀 , system 𝑆𝑌

initialize a samples cache: 𝑄 := 𝐷𝑖𝑐𝑡 ()
get nodes along the path to the objectives: 𝑃 = 𝑀.𝑝𝑎𝑡ℎ(𝑆𝑌 .𝑜𝑏 𝑗)
for node 𝑛 in 𝑃 .𝑛𝑜𝑑𝑒𝑠 do

if 𝑛 ∈ 𝑆𝑌 .𝑝𝑎𝑟𝑎𝑚𝑠 then

sample parameters: 𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑠 .𝑠𝑎𝑚𝑝𝑙𝑒 (𝑛.𝑠𝑝𝑎𝑐𝑒 ())
cache generated samples: 𝑄 ∪ (𝑛.𝑘𝑒𝑦, 𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑠 )

else

condition on parents: 𝐶 = 𝑛.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑄 [𝑛.𝑝𝑎𝑟𝑒𝑛𝑡𝑠])
cache node results conditioned on parents: 𝑄 ∪ (𝑛.𝑘𝑒𝑦,𝐶)

end if

end for

Return: 𝑄 [𝑆𝑌 .𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠]

3.3 Graph of a Probabilistic Models

BoGraph builds the probabilistic DAG by placing a GP node

on intermediate nodes, and then it connects any expert-

defined models as illustrated in Figure 4. The probabilistic

DAG nodes’ are compartmentalized, where each node pre-

dicts a single value conditioned on its parents directly and

can be trained independently. As a result, any node can be an

optimization target, providing free multi-objective modeling

and enabling a parallelizable training. We will investigate

both in a follow-up project.

Sampling process. Allowing general probabilistic mod-

els comes at the cost that closed-form acquisition function

optimization is not possible; instead, BoGraph samples the

model and then optimizes over the samples. This design

gives it the freedom to use any probabilistic model inside the

graph, such as Bayesian Neural Networks [35]. Algorithm

1 shows the process to generate a prediction and samples

from a probabilistic DAG. First, BoGraph finds all the nodes

with a direct path from the parameters to the objective. Then,

it creates a cache to hold all the samples and avoid recom-

puting them for nodes with multiple children. Next, each

node condition on the parents’ prediction of the samples,

and finally output the posterior of the objectives.

class ExpertModel(PyroNode): # User extends PyroNode to build models
def model(x1: Tensor, obs: Tensor = None):
i = pyro.sample("intercept", dist.Uniform(0., 5.))
linear_mean = i + pyro.sample("bias_x1", dist.Normal(0.,1.))
... # a standard Bayesian model using Pyro

prior_dag = BoGraphPrior() # BoGraph uses `networkx` API
prior_dag.add_edges_from(['x1', 'f1(x1)']) # f1(x1) depends on x1
prior_dag.add_model("f1(x1)", ExpertModel()) # add expert's model
prior_dag.add_model("y", GPyTorchModel()) # standard GP model
prior_dag.add_tabu_edge("x1", "y") # Edges known to not be correlated
BoGraph.optimize(objective=Forrester2D, prior=prior_dag)

Listing 1. BoGraph API showing expert knowledge injection

3.4 Structured Bayesian Optimization

Algorithm 2 BoGraph Bayesian Optimization loop

Input: acquisition function 𝛼 , system 𝐸, budget

repeat

build DAG model from logs: 𝐷𝐴𝐺𝑀 = 𝐵𝑜𝐺𝑟𝑎𝑝ℎ(𝐸.𝑙𝑜𝑔𝑠 ())
select next to point to evaluate: 𝑥𝑛+1 = 𝛼 (𝑠 .𝑠𝑎𝑚𝑝𝑙𝑒 (𝐷𝐴𝐺𝑀 ))
submit 𝑥𝑛+1 to be evaluated: 𝐸.𝑢𝑝𝑑𝑎𝑡𝑒 (𝑥𝑛+1)

until 𝑏𝑢𝑑𝑔𝑒𝑡 = 0

Optimization loop. Algorithm 2 details the optimization

loop. BoGraph’s probabilistic DAG combines several models’

posterior, producing a complicated posterior that cannot be

optimized directly. Instead, we use quasi-acquisition func-

tions that optimize the estimate from samples rather than

the model directly. BoTorch [6] provides a suite of utility

functions for BO frameworks, including quasi-acquisition

functions and samplers. We use BoTorch’s Sobol sequence

sampler to generate diverse samples of the posterior, then

use the quasi-Expected Improvement acquisition function to

optimize the estimates and produce optimization candidates.

3.5 BoGraph API

BoGraph API streamlines the process of expressing system

designers’ knowledge by providing both high and low-level

APIs. Listing 1 shows several of the functions BoGraph that

enable experts to encode their knowledge in several ways:

A high-level DAG API for expressing the dependencies be-

tween parameters and metrics. The API extends the popular

library for building graphs, networkX [23] as such provides

the ability to read all the popular methods for defining di-

rected graphs. And a lower-level API that allows expressing

experts’ knowledge using Pyro [11], the probabilistic pro-

gramming language. By default, BoGraph uses a GP as the

metric model if no probabilistic model is defined. The GP

implementation we use is GPyTorch [22] a performant GP

implementation. The user can override the kernel of the GP

to inject any prior information about the objective function

distribution; this is only recommended for advanced users.



BoGraph: Structured Bayesian Optimization From Logs for Expensive Systems with Many Parameters EuroMLSys ’22, April 5–8, 2022, RENNES, France

3.6 Summary

BoGraph simplifies the process of integrating SBO in systems

for faster optimizer convergence. The main loop performs

structure learning of the system’s components by processing

the logs and transforming it into a probabilistic model. The

framework exposes an API that allows experts to encode

dependency structure and probabilistic models.

4 Evaluation

System-on-a-chip (SoC) designers often experiment on a sim-

ulator [12, 15, 46] to reduce the energy and latency of inte-

grated chips [10, 41]. Unfortunately, the design space is enor-

mous (≈ 2
64
combinations) hence the need for BoGraph. We

optimized Energy-Delay Product (EDP)[5] of gem5-Aladdin

[47] where 𝐸𝐷𝑃 = 𝑒𝑛𝑒𝑟𝑔𝑦 ∗ ( 1

𝑠𝑖𝑚_𝑠𝑒𝑐𝑜𝑛𝑑𝑠
)2 by tuning all the

design parameters exposed by the simulator [25].

Setup. The experiment setup ran on RTX3060TI, Intel i7

8700k, and 32GB RAM. BoGraph uses GPs from GPyTorch

v1.2 [22], samplers and acquistion functions from BoTorch

v0.5 [6], and CausalNex v0.11 [7] for structure learning.

Benchmark.We benchmarked the MachSuite [43] that

has amix of data and compute workloads as is the standard in

SoC design literature [41, 47]. The gem5-Aladdin simulator

was compiled using MESI Two Level Aladdin protocol, and

the power was estimated using MathExprPowerModel.

Baselines.We used these baselines in the experiments:

• Default [24]: the settings provided by the simulator.

• Random [8, 40]: useful when small subset of the di-

mensions significantly impact the objective.

• PBTTuner [28, 40]: a bag ofmodel approach to finding

a collection of optimal configurations.

• BoTorch [6]: shows the effectiveness of BoGraph

with everything else being equal as BoGraph shares

BoTorch’s samplers and acquisition functions.

• DeepGP [17]: Provides unsupervised structure discov-

ery in the latent space. We configured a two-layer GPs

with 64 inducing points (Our GPU’s max VRAM).

Expert knowledge. We provided BoGraph with the EDP

formula: edges from power and latency to the EDP.

Evaluation goals.We evaluated the following claims:

• The overhead of running BoGraph is lower than run-

ning a full system evaluation, 4.1.

• BoGraph converges towards optimal configurations

faster than other state-of-the-art methods, 4.2.

• BoGraph produces interpretable system structures that

reduces the maximum dimension, 4.3.

4.1 Execution time

We compared the execution time of the simulator for each

task and compared it to the overhead of using an auto-tuner

in Figure 5. The results show that the optimizers are cheaper

than a full system evaluation. Hence the need for auto-tuners

that perform better than simple parameter sweeps.

0 50 100 150 200 250 300

Time(sec)

TRANSPOSE

KNN

CRS

ELLPACK

STRIDED

STENCIL2D

STENCIL3D

NCUBED

Ta
sk

46.89s

48.30s

49.55s

80.40s

101.74s

131.97s

222.33s

269.12s

(a) Tasks’ average execution time, with variance from 1800 runs.

0 2 4 6 8 10 12

Model

Random

PBTTuner

BoTorch

BoGraph

DeepGP

In
fe

re
nc

e 
tim

e

0.00s

0.00s

0.24s

5.85s

11.69s

(b) Auto-tuners’ average time to train and propose a configuration,

with variances from 300 runs.

Figure 5. Optimizers’ execution time is dominated by the gem5-

Aladdin task execution time.

Table 1. ELLPACK’s performance for the median best configura-

tion proposed by the models, lower values are better.

model log EDP Latency Power (mWatts)

BoGraph 8.12 ± 0.28 11.06 ± 0.19 27.37 ± 11.59
DeepGP 10.14 ± 0.27 11.06 ± 3.92 203.15 ± 46.34

PBTTuner 10.34 ± 0.60 10.81 ± 4.46 264.36 ± 147.79

BoTorch 10.44 ± 0.62 11.06 ± 3.90 108.46 ± 102.97

Random 10.74 ± 0.19 18.32 ± 4.81 143.94 ± 194.83

Default 14.50 ± 0 94.80 ± 0 220.34 ± 0

4.2 EDP Optimization

Figure 6 examines the improvement in the EDP from the de-

fault configurations across all tasks. BoGraph outperformed

every other method and improved over the default by 5𝑥−7𝑥
factors. Examining that further, Table 1 shows that BoGraph

found configurations with the least power consumption for

the ELLPACK task. Other tuners are stuck in local minima

that do not improve the energy as they are unaware the EDP

is impacted by power. BoGraph is aware that the latency

and power impact EDP thus can avoid the local minima. The

same story applies to the other tasks in the benchmark.



EuroMLSys ’22, April 5–8, 2022, RENNES, France Sami Alabed and Eiko Yoneki

TRANSPOSE STENCIL3D NCUBED STENCIL2D STRIDED CRS ELLPACK KNN
Task

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

X
-F

a
ct

or
s 

im
pr

ov
em

e
nt

 in
 E

D
P

 fr
om

 D
ef

au
lt

Random PBTTuner DeepGP BoTorch BoGraph

Figure 6. The best found EDP in 100 steps. The y-axis shows X-factors improvement over default settings and the variance of three runs.

20 40 60 80 100

Optimization step

2

3

4

5

6

X
-f

ac
to

r 
im

pr
o

ve
m

en
t o

ve
r 

D
ef

au
lt

BoGraph

BoTorch

DeepGP

PBTTuner

Random

Figure 7. Auto-tuners’ improvement over default, with a median

best configuration and the error bars showing a minimum of 3 runs.

Convergence. Figure 7 examines the convergence rate of

each optimizer as minimizing the evaluations reduces the

cost significantly (Challenge 1.2.1). BoGraph reached the best

configuration the quickest and continued to improve while

other methods plateaued. Confirming that tuning computer

systems is challenging for most auto-tuners. BoGraph im-

provement jumps at every 20th step in Figure 7 are caused

by the structure learning algorithm, as its update frequency

defaults to a quarter of the evaluation budget.

4.3 Structure discovery

There are over 1000 metrics reported in a gem5 statistics

file. BoGraph shields the end-user from the difficult task of

defining a probabilistic model while providing an insightful

structure to the designer as shown in Figure 3C. Further-

more, Figure 8 shows that learning structure does reduce the

maximum dimension for the models in the graph.

5 Oppurtinities and limitation.

5.1 Oppurtinities

BoGraph is still evolving, with aims to apply to different

problem spaces, evaluate it on a multi-objective problem,

and improve its computational engine.

0 15 30 45 60 75 90

Optimization step

6

9

12

15

18

21

24

M
ax

 D
im

Figure 8. BoGraph DAG max-dimension (lower is better) of

three repeated runs. The max dimension is defined as 𝑀𝐷 =

∀𝑛∈𝐺𝑚𝑎𝑥 (𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 (𝑛)), each node becomes a probabilistic model.

Multi-objective optimization. Multi-objective modeling

is an interesting opportunity for computer system objectives

often compete (latency vs. throughput, energy vs. latency).

Modeling multiple objectives is trivial in BoGraph as a result

of using DAGs as an internal data structure as any node can

be sampled. Then using off-the-shelf multi-objective util-

ity functions such as expected hypervolume improvement

function [18] to optimize the samples from multiple nodes.

Computational overhead. The overhead of using struc-

tured DAG is high compared to the standard approaches.

During training and sampling, BoGraph performs sequential

operations without exploiting the independence between

nodes to batch and distribute the workload. Leveraging par-

allelization will reduce the computational time of BoGraph.

Application domains. We have shown BoGraph ability to

find meaningful structure from logs and use that to optimize

gem5-Aladdin. Other computer systems will benefit from

BoGraph ability to make sense of logs in aiding the optimizer.

We are working on a case study on optimizing the latency of

PostgreSQL [38], BoGraph is using the reported 370 metrics

to find links between the metrics and the latency objective

and tuning of thirty parameters.



BoGraph: Structured Bayesian Optimization From Logs for Expensive Systems with Many Parameters EuroMLSys ’22, April 5–8, 2022, RENNES, France

5.2 Limitations

BoGraph’s pipeline overhead. BoGraph maintains the

system trace (previous evaluation, configurations, and logs)

on disk, reading and writing these traces have both a mem-

ory and execution time overhead. This is a design choice we

took for the following reasons: First, the cost of the real sys-

tem dominates the execution of the pipeline (subsection 4.1).

Secondly, this enables BoGraph in the future to learn from

distributed instances. Finally, it provides a fault-tolerance

mechanism for when the instance has to restart.

Mitigation. Every stage and component of the BoGraph

pipeline is configurable. For example, the user can decide to

reduce the frequency of a full causal structure discovery or

include preprocessing steps that reduce the computation fur-

ther by extending the preprocessing interface. This flexibility

offers somemitigation to the pipeline overhead. Furthermore,

to mitigate this overhead, BoGraph can run a helper instance

that runs the pipeline and communicate only the summarized

information to the BoGraph main loop.

Log annotation. A key contribution of BoGraph is provid-

ing a pipeline to make use of system logs and metrics to

provide additional context that aids the system model. Re-

lying on the user to annotate their logs is one limitation

of this work. The annotation process involves providing

a parser of the metrics or system logs; in gem5 and Post-

gresSQL experiments, it is a one-line regex expression. Logs

in computer systems follow a standard practice [55] as they

are often produced to be ingested into metric monitoring

applications such as Prometheus [13]. However, suppose the

system is very different where the logs do not correlate with

the system. In that case, it is possible to disable the structure

learning pipeline in BoGraph and rely on a manual structure,

resulting in a similar performance to the standard structure

Bayesian Optimization method [16].

6 Related work

Search-based auto-tuners. Reinforcement learning [49],

random search [8], evolutionary search (in PetaBricks) [3],

hill-climbing (in OpenTuner) [4], or population-search [29]

are simple auto-tuner to use and scale to many parame-

ters. However, they require many system evaluations, waste

valuable expert knowledge, and are highly dependent on ini-

tializing seed (unstable) [26]. These drawbacks render them

unsuitable for our problem due to Challenge 1.2.1.

Dimensionality reduction. OtterTune [50] used Factor

Analysis [30] to reduce the system dimensions. However,

as the OtterTune experiment expanded to a large system

[51], it made apparent that computer system parameters

have complex interactions that standard dimensionality re-

duction methods fail to capture (Challenge 1.2.3). Principled

Component Analysis [54] suffer from a similar problem.

BO surrogate models. RandomForest [33] used in SMAC

[27] and HyperMapper [39] scales to many parameters. Un-

fortunately, non-Bayesian methods underestimate the mod-

els’ variance [45] meaning they explore less frequently and

miss on finding the optimal configurations. DeepGPs [17]

use several layers of GPs that reduce the objective dimension-

ality by finding a latent structure of it. However, it requires

many experiments to find a meaningful latent structure as it

ignores existing expert knowledge.

Parallel based auto-tuners. AutoTVM [14], Hyperband

[32] and BOHB [19] are techniques that depend on the envi-

ronment being cheap to terminate and easily parallelizable.

Computer systems are expensive and slow to evaluate; engi-

neering them to launch many parallel instances is non-trivial

without impacting the measurement sensitivity.

Experts-driven methods. Ernest [52], and RubberBand

[37] use hand-craftedmodels tomeasure the proposed config-

urations’ effectiveness quickly leading to quick optimization.

While Causal Bayesian Optimization [1] assumes that a full

causal graph of the system exists to speed up finding optimal

system configurations. Hand-crafting models for systems is

a complicated, error-prone task that requires expertise in

systems and machine learning (Challenge 1.2.4).

7 Conclusion

BoGraph is a framework for optimizing systems with many

parameters and slow execution. BoGraph contextualizes the

system through learning association between its metrics and

parameters. Furthermore, it provides an API to encode ex-

perts’ knowledge as probabilistic models. The contextualiza-

tion leads to tuning more parameters in fewer experiments.

Using BoGraph we optimized the design of an accelerator

to improve its energy-latency objective by 2𝑥 in 1/4 of the
evaluations of the next best method. For future work, we are

applying BoGraph to PostgreSQL, showing applicability to a

range of computer systems.

Acknowledgments

We would like to thank the reviewers for their valuable feed-

back. A special thanks to Thomas Vanderstichele, Mihai Bu-

janca, Yomna El-Serafy, Ibrahim Abdou, and Rana ElRashidy

for their comments that improved the readability of the paper.

This research was supported by the Alan Turing Institute.

References

[1] Virginia Aglietti, Xiaoyu Lu, Andrei Paleyes, and Javier González.

Causal Bayesian Optimization. In International Conference on Artificial
Intelligence and Statistics, pages 3155–3164. PMLR, 2020.

[2] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram

Venkataraman, Minlan Yu, and Ming Zhang. CherryPick: Adaptively

Unearthing the Best Cloud Configurations for Big Data Analytics,

2017.

[3] Jason Ansel and Cy Chan. PetaBricks. XRDS: Crossroads, The ACM
Magazine for Students, 17(1):32, 2010.



EuroMLSys ’22, April 5–8, 2022, RENNES, France Sami Alabed and Eiko Yoneki

[4] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-

Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.

OpenTuner. In Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation - PACT ’14, pages 303–316, 2014.

[5] Omid Azizi, Aqeel Mahesri, Benjamin C Lee, Sanjay J Patel, and Mark

Horowitz. Energy-performance tradeoffs in processor architecture

and circuit design: A marginal cost analysis. ACM SIGARCH Computer
Architecture News, 38(3):26–36, 2010.

[6] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton,

Benjamin Letham, Andrew Gordon Wilson, and Eytan Bakshy.

BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimiza-

tion. arXiv:1910.06403 [cs, math, stat], December 2020.

[7] Paul Beaumont, Ben Horsburgh, Philip Pilgerstorfer, Angel Droth,

Richard Oentaryo, Steven Ler, Hiep Nguyen, Gabriel Azevedo Ferreira,

Zain Patel, and Wesley Leong. CausalNex, 2021.

[8] James Bergstra and Yoshua Bengio. Random search for hyper-

parameter optimization. Journal of machine learning research,
13(Feb):281–305, 2012.

[9] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy.

Site Reliability Engineering: How Google Runs Production Systems. "
O’Reilly Media, Inc.", 2016.

[10] Kshitij Bhardwaj, Marton Havasi, Yuan Yao, David M. Brooks, José

Miguel Hernández Lobato, and Gu-Yeon Wei. Determining optimal

coherency interface for many-accelerator socs using bayesian opti-

mization. IEEE Computer Architecture Letters, 18(2):119–123, 2019.
[11] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer,

Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul

Horsfall, and Noah D. Goodman. Pyro: Deep Universal Probabilistic

Programming. October 2018.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-

hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar

Krishna, and Somayeh Sardashti. The gem5 simulator. ACM SIGARCH
computer architecture news, 39(2):1–7, 2011.

[13] Brian Brazil. Prometheus: Up & Running: Infrastructure and Application
Performance Monitoring. " O’Reilly Media, Inc.", 2018.

[14] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, ThierryMoreau,

Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Learning to

optimize tensor programs. arXiv preprint arXiv:1805.08166, 2018.
[15] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2:

A Flexible Accelerator for Emerging Deep Neural Networks on Mobile

Devices. arXiv:1807.07928 [cs], May 2019.

[16] Valentin Dalibard, Michael Schaarschmidt, and Eiko Yoneki. BOAT:

Building auto-tuners with structured Bayesian optimization. In Pro-
ceedings of the 26th International Conference on World Wide Web -
WWW ’17, pages 479–488, New York, New York, USA, 2017. ACM

Press.

[17] Andreas Damianou and Neil D Lawrence. Deep gaussian processes.

In Artificial Intelligence and Statistics, pages 207–215. PMLR, 2013.

[18] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differen-

tiable expected hypervolume improvement for parallel multi-objective

Bayesian optimization. arXiv preprint arXiv:2006.05078, 2020.
[19] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust

and efficient hyperparameter optimization at scale. arXiv preprint
arXiv:1807.01774, 2018.

[20] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and

Karthik Ramasamy. Dhalion: Self-regulating stream processing in

heron. Proceedings of the VLDB Endowment, 10(12):1825–1836, 2017.
[21] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei

Lin, Dongmei Zhang, and Tao Xie. Where do developers log? an empir-

ical study on logging practices in industry. In Companion Proceedings
of the 36th International Conference on Software Engineering, pages
24–33, 2014.

[22] Jacob R. Gardner, Geoff Pleiss, David Bindel, Kilian Q. Weinberger, and

Andrew Gordon Wilson. GPyTorch: Blackbox Matrix-Matrix Gaussian

Process Inference with GPU Acceleration. arXiv:1809.11165 [cs, stat],
January 2019.

[23] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network

structure, dynamics, and function using NetworkX. Technical report,

Los Alamos National Lab.(LANL), Los Alamos, NM (United States),

2008.

[24] gem5-aladdin harvard-acc. Gem5-Aladdin SoC Simulator. Harvard

Architecture, Circuits, and Compilers, October 2016.

[25] gem5-aladdin-param harvard-acc. Gem5-Aladdin SoC Simulator. Har-

vard Architecture, Circuits, and Compilers, October 2021.

[26] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina

Precup, and David Meger. Deep reinforcement learning that matters.

arXiv preprint arXiv:1709.06560, 2017.
[27] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An evaluation of

sequential model-based optimization for expensive blackbox functions.

In Proceedings of the 15th Annual Conference Companion on Genetic
and Evolutionary Computation, pages 1209–1216, 2013.

[28] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czar-

necki, Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dun-

ning, and Karen Simonyan. Population based training of neural net-

works. arXiv preprint arXiv:1711.09846, 2017.
[29] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czar-

necki, Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dun-

ning, Karen Simonyan, Chrisantha Fernando, and Koray Kavukcuoglu.

Population Based Training of Neural Networks. November 2017.

[30] Paul Kline. An Easy Guide to Factor Analysis. Routledge, 2014.
[31] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Prin-

ciples and Techniques. MIT press, 2009.

[32] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and

Ameet Talwalkar. Hyperband: A novel bandit-based approach to hy-

perparameter optimization. The Journal of Machine Learning Research,
18(1):6765–6816, 2017.

[33] Andy Liaw and Matthew Wiener. Classification and regression by

randomForest. R news, 2(3):18–22, 2002.
[34] Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When Gauss-

ian Process Meets Big Data: A Review of Scalable GPs. arXiv:1807.01065
[cs, stat], April 2019.

[35] David JC MacKay. Bayesian neural networks and density networks.

Nuclear Instruments and Methods in Physics Research Section A: Acceler-
ators, Spectrometers, Detectors and Associated Equipment, 354(1):73–80,
1995.

[36] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus

Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy

Bengio, and Jeff Dean. Device Placement Optimization with Reinforce-

ment Learning. CoRR, abs/1706.0, June 2017.
[37] Ujval Misra, Richard Liaw, Lisa Dunlap, Romil Bhardwaj, Kirthevasan

Kandasamy, Joseph E. Gonzalez, Ion Stoica, and Alexey Tumanov.

RubberBand: Cloud-based hyperparameter tuning. In Proceedings of
the Sixteenth European Conference on Computer Systems, pages 327–342,
Online Event United Kingdom, April 2021. ACM.

[38] Bruce Momjian. PostgreSQL: Introduction and Concepts, volume 192.

Addison-Wesley New York, 2001.

[39] Luigi Nardi, David Koeplinger, and Kunle Olukotun. Practical design

space exploration. In 2019 IEEE 27th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 347–358. IEEE, 2019.

[40] OpenSource. Microsoft/nni. Microsoft, December 2020.

[41] Andy D Pimentel. Exploring exploration: A tutorial introduction

to embedded systems design space exploration. IEEE Design & Test,
34(1):77–90, 2016.

[42] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian
Processes for Machine Learning. Adaptive Computation and Machine

Learning. MIT Press, Cambridge, Mass., 3. print edition, 2008.



BoGraph: Structured Bayesian Optimization From Logs for Expensive Systems with Many Parameters EuroMLSys ’22, April 5–8, 2022, RENNES, France

[43] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and

David Brooks. Machsuite: Benchmarks for accelerator design and

customized architectures. In 2014 IEEE International Symposium on
Workload Characterization (IISWC), pages 110–119. IEEE, 2014.

[44] Mauro Scanagatta, Antonio Salmerón, and Fabio Stella. A survey on

Bayesian network structure learning from data. Progress in Artificial
Intelligence, pages 1–15, 2019.

[45] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and

Nando De Freitas. Taking the human out of the loop: A review of

Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.
[46] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks.

Aladdin: A pre-rtl, power-performance accelerator simulator enabling

large design space exploration of customized architectures. In 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pages 97–108. IEEE, 2014.

[47] Yakun Sophia Shao, Sam Likun Xi, Vijayalakshmi Srinivasan, Gu-Yeon

Wei, and David Brooks. Co-designing accelerators and soc interfaces

using gem5-aladdin. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[48] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian

optimization of machine learning algorithms. In Advances in Neural
Information Processing Systems, pages 2951–2959, 2012.

[49] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning : An
Introduction. MIT Press, Cambridge Mass., 1998.

[50] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang.

Automatic Database Management System Tuning Through Large-

scale Machine Learning. In Proceedings of the 2017 ACM International
Conference on Management of Data - SIGMOD ’17, pages 1009–1024,
New York, New York, USA, 2017. ACM Press.

[51] Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino,

Bohan Zhang, Christian Bilien, and Andrew Pavlo. An inquiry into

machine learning-based automatic configuration tuning services on

real-world database management systems. Proceedings of the VLDB
Endowment, 14(7):1241–1253, 2021.

[52] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin

Recht, and Ion Stoica. Ernest: Efficient performance prediction for

large-scale advanced analytics. In 13th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 16), pages 363–378,
2016.

[53] ZiyuWang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando

de Feitas. Bayesian optimization in a billion dimensions via random

embeddings. Journal of Artificial Intelligence Research, 55:361–387,
2016.

[54] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component

analysis. Chemometrics and intelligent laboratory systems, 2(1-3):37–52,
1987.

[55] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging

practices in open-source software. In 2012 34th International Conference
on Software Engineering (ICSE), pages 102–112. IEEE, 2012.

[56] Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P Xing. Dags

with no tears: Continuous optimization for structure learning. arXiv
preprint arXiv:1803.01422, 2018.


	Abstract
	1 Introduction
	1.1 BoGraph
	1.2 Challenges in systems optimization
	1.3 Contributions

	2 Background
	2.1 Bayesian optimization
	2.2 Gaussian Process
	2.3 Probabilistic DAG

	3  BoGraph Framework
	3.1 Structure discovery from logs
	3.2 Structure learning
	3.3 Graph of a Probabilistic Models
	3.4 Structured Bayesian Optimization
	3.5  BoGraph API
	3.6 Summary

	4 Evaluation
	4.1 Execution time
	4.2 EDP Optimization
	4.3 Structure discovery

	5 Oppurtinities and limitation.
	5.1 Oppurtinities
	5.2 Limitations

	6 Related work
	7 Conclusion
	Acknowledgments
	References

