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Why do 
we need 

RAG?

Reduces LLM hallucinations

Keeps responses up-to-date 
without retraining

Grounds LLM response in 
credible sources



How does centralized RAG work?
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Problem: Information is often spread across multiple data 
sources

A single vector database handles all queries - efficient, but assumes all 
data is centrally stored



Federated RAG
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Enables unified access to multiple data sources in real time

Bypasses data migration - avoiding regulatory and technical barriers

Works with existing infrastructure - no need for major changes



Our contribution: RagRoute
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The number of relevant sources depends on the query

Querying irrelevant sources can increase hallucinations

Unnecessary queries increase communication volume and compute cost



RagRoute training
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Inference

Training



RagRoute architecture
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Input Features

Query embedding
Dataset centroid

Query-centroid similarity
Number of documents

Dataset density 

Model Architecture

Binary relevance indicator with
3-layer fully connected NN

Hidden Layer 1: 256 neurons
LayerNorm → ReLU → Dropout
Hidden Layer 2: 128 neurons
LayerNorm → ReLU → Dropout

Training Setup

Binary Cross-Entropy Loss

Positional weight for imbalance

Cyclic learning rate scheduler

30% train, 10% val, 60% test



Evaluation: MIRAGE benchmark

Data sources: we use each MEDRAG corpus as a data source in our setting

8



Evaluation: MMLU benchmark

Data sources: to simulate data sources, we group the embeddings of 
Wikipedia snippets into 10 clusters using the k-means algorithm.
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MedRAG document distribution top 32
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MedRAG document distribution top 32
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On average, 1.29 to 2.84 corpora 
per question



MedRAG document distribution top 32
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Querying only relevant nodes can 
greatly reduce the nb of queries!



Recall
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Recall
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Classification results
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Number of queries
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Up to 71.3% reduction for MIRAGE benchmark

77.5% reduction for MMLU benchmark (from 13 890 to to 3126)



End-to-end LLM accuracy 
-

MIRAGE

We use the LLaMA 3.1 Instruct model
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Conclusion
RAGRoute

• Novel and efficient routing mechanism for federated RAG

• Reduces total number of queries by up to 77.5%

• Maintains high retrieval quality and end-to-end accuracy
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Bonus
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