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Reduces LLM hallucinations

Why do
we need
RAG?

Grounds LLM response in

credible sources




How does centralized RAG work?
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A single vector database handles all queries - efficient, but assumes all
data is centrally stored

Problem: Information is often spread across multiple data
sources



Federated RAG
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Data sources

Enables unified access to multiple data sources in real time

Bypasses data migration - avoiding regulatory and technical barriers

Works with existing infrastructure - no need for major changes



Our contribution: RagRoute

Query @ Data
Query .’i \. Embedding Data | —=—> di N
l/ Vg Retrieval |/ —» Response
User Embedding  (2) 4(;!')_) LLM
Model Query

Data sources

The number of relevant sources depends on the query

Querying irrelevant sources can increase hallucinations

Unnecessary queries increase communication volume and compute cost



RagRoute training

Training
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RagRoute architecture

Input Features Model Architecture Training Setup

Query embedding Binary relevance indicator with Binary Cross-Entropy Loss
Dataset centroid 3-layer fully connected NN
Query-centroid similarity Positional weight for imbalance
Number of documents Hidden Layer 1: 256 neurons
Dataset density LayerNorm > ReLU - Dropout Cyclic learning rate scheduler
Hidden Layer 2: 128 neurons

LayerNorm > RelU > Dropout 30% train, 10% val, 60% test




Evaluation: MIRAGE benchmark

MIRAGE Benchmark | MEDRAG Corpora

Dataset Size |Corpus Chunks

MMLU-Med 1,089 PubMed 23.9M
MedQA-US 1,273 | StatPearls 301.2k
MedMCQA 4,183 | Textbooks 125.8k
PubMedQA 500 Wikipedia 29.9M
BioASQ-Y/N 618 MedCorp (Fusion)] 54.2M

Data sources: we use each MEDRAG corpus as a data source in our setting



Evaluation: MMLU benchmark

question
string

Find the degree for the given field extension
Q(sqrt(2), sqrt(3), sqrt(18)) over Q.

Let p = (1, 2, 5, 4)(2, 3) in S_5 . Find the
index of <p> in S_5.

Find all zeros in the indicated finite field
of the given polynomial with coefficients in..

Statement 1 | A factor group of a non-Abelian
group is non-Abelian. Statement 2 | If K is a..

subject
string

abstract_algebra

abstract_algebra

abstract_algebra

abstract_algebra

choices
sequence

[ IIGII' II4II' II2II’ II6II ]

[ ”8", II2II' II24II' II120II ]

[ IIBII' II1II' IIO'lII'I IIO,AII ]

[ "True, True", "False, False", "True,
False", "False, True" ]

answer
class label

Data sources: to simulate data sources, we group the embeddings of
Wikipedia snippets into 10 clusters using the k-means algorithm.



MedRAG document distribution top 32

Percentage of Questions Querying per Corpus Top 32
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MedRAG document distribution top 32

Percentage of Questions Querying per Corpus Top 32
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MedRAG document distribution top 32

Percentage of Questions Querying per Corpus Top 32
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Classification results

Experiment Accuracy (%)] Recall (%) |F1-Score (%)

MIRAGE (Top 32) | 85.63 +3.92 | 8547 +3.61 | 85.79 + 2.45
MIRAGE (Top 10)| 873 +6.1 | 88.32+3.96 | 85.43 +4.18
MMLU (Top 10) 90.06 + 5.04 | 76.23 + 6.64 | 78.29 + 7.59




Number of queries
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Up to 71.3% reduction for MIRAGE benchmark
77.5% reduction for MMLU benchmark (from 13 890 to to 3126)
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End-to-end LLM accuracy
MIRAGE

Corpus Top 32 Accuracy (%) Top 10 Accuracy (%)
No RAG 67.04 £ 7.66 67.04 £ 7.66
RAG (all corpora) 72.22 £ 9.86 72.21 £ 10.33
RAGROUTE (our work) 72.24 + 9.36 72.00 + 10.57

We use the LLaMA 3.1 Instruct model



Conclusion

RAGRoute

* Novel and efficient routing mechanism for federated RAG
* Reduces total number of queries by up to 77.5%

* Maintains high retrieval quality and end-to-end accuracy
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Bonus



We run our experiments on our university cluster®. Each
node has a NVIDIA A100 GPU and contains 500 GB of main
memory.
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Inference time. The routing inference time is minimal in
terms of latency. Inference with a batch size of 32 completes
within 0.3 milliseconds with an NVIDIA A100 GPU and 0.8
milliseconds with a AMD EPYC 7543 32-Core CPU. As such,
the overhead of routing has a negligible impact on the end-
to-end latency of queries. Because our router is lightweight,
it also suitable for usage on low-resource devices.
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