Efficient Federated Search for Retrieval-Augmented Generation

Rachid Guerraoui, Anne-Marie Kermarrec, <u>Diana Petrescu</u>, Rafael Pires, Mathis Randl, Martijn de Vos

Why do we need RAG?

Reduces LLM hallucinations

Keeps responses up-to-date without retraining

Grounds LLM response in credible sources

How does centralized RAG work?

A single vector database handles all queries - efficient, but assumes all data is centrally stored

Problem: Information is often spread across multiple data sources

Federated RAG

Enables **unified access** to multiple data sources in real time

Bypasses data migration - avoiding regulatory and technical barriers

Works with existing infrastructure - no need for major changes

Our contribution: RagRoute

The number of relevant sources depends on the query

Querying irrelevant sources can increase hallucinations

Unnecessary queries increase communication volume and compute cost

RagRoute training

Training

Inference

RagRoute architecture

Input Features

Query embedding Dataset centroid Query-centroid similarity Number of documents Dataset density

Model Architecture

Binary relevance indicator with 3-layer fully connected NN

Hidden Layer 1: 256 neurons LayerNorm → ReLU → Dropout Hidden Layer 2: 128 neurons LayerNorm → ReLU → Dropout

Training Setup

Binary Cross-Entropy Loss

Positional weight for imbalance

Cyclic learning rate scheduler

30% train, 10% val, 60% test

Evaluation: MIRAGE benchmark

MIRAGE Ben	chmark	MEDRAG Corpora		
Dataset	Size	Corpus	Chunks	
MMLU-Med MedQA-US MedMCQA PubMedQA BioASQ-Y/N	1,089 1,273 4,183 500 618	PubMed StatPearls Textbooks Wikipedia MedCorp (Fusion)	23.9M 301.2k 125.8k 29.9M 54.2M	

Data sources: we use each MEDRAG corpus as a data source in our setting

Evaluation: MMLU benchmark

<pre>question string · lengths</pre>	\$ <pre>subject \$\$ string · classes</pre>	choices sequence · <i>lengths</i>	\$ answer 🔶 class label
41 243	1 value	4 4	4 classes
Find the degree for the given field extension Q(sqrt(2), sqrt(3), sqrt(18)) over Q.	abstract_algebra	["0", "4", "2", "6"]	1 B
Let $p = (1, 2, 5, 4)(2, 3)$ in S_5 . Find the index of in S_5.	abstract_algebra	["8", "2", "24", "120"]	2 C
Find all zeros in the indicated finite field of the given polynomial with coefficients in…	abstract_algebra	["0", "1", "0,1", "0,4"]	3 D
Statement 1 A factor group of a non-Abelian group is non-Abelian. Statement 2 If K is a…	abstract_algebra	["True, True", "False, False", "True, False", "False, True"]	1 B

Data sources: to simulate data sources, we group the embeddings of **Wikipedia snippets** into 10 clusters using the k-means algorithm.

MedRAG document distribution top 32

10

MedRAG document distribution top 32

Percentage of Questions Querying per Corpus Top 32

MedRAG document distribution top 32

Percentage of Questions Querying per Corpus Top 32

Recall

Question set

Recall

Classification results

Experiment Ac	curacy (%)	Recall (%)	F1-Score (%)	
MIRAGE (Top 32) 8	5.63 ± 3.92	85.47 ± 3.61	85.79 ± 2.45	
MIRAGE (Top 10) 9	87.3 ± 6.1	88.32 ± 3.96	85.43 ± 4.18	
MMLU (Top 10) 9	0.06 ± 5.04	76.23 ± 6.64	78.29 ± 7.59	

Number of queries

Up to 71.3% reduction for MIRAGE benchmark

77.5% reduction for MMLU benchmark (from 13 890 to to 3126)

End-to-end LLM accuracy MIRAGE

Corpus	Top 32 Accuracy (%)	Top 10 Accuracy (%)
No RAG	67.04 ± 7.66	67.04 ± 7.66
RAG (all corpora)	72.22 ± 9.86	72.21 ± 10.33
RAGROUTE (our work)	72.24 ± 9.36	72.00 ± 10.57

We use the LLaMA 3.1 Instruct model

Conclusion

RAGRoute

- Novel and efficient **routing mechanism** for federated RAG
- Reduces total number of queries by up to 77.5%
- Maintains high retrieval quality and end-to-end accuracy

Bonus

We run our experiments on our university cluster². Each node has a NVIDIA A100 GPU and contains 500 GB of main memory.

Inference time. The routing inference time is minimal in terms of latency. Inference with a batch size of 32 completes within 0.3 milliseconds with an NVIDIA A100 GPU and 0.8 milliseconds with a AMD EPYC 7543 32-Core CPU. As such, the overhead of routing has a negligible impact on the end-to-end latency of queries. Because our router is lightweight, it also suitable for usage on low-resource devices.