

Exploiting Unstructured Sparsity in Fully Homomorphic Encrypted DNNs

Aidan Ferguson¹, Perry Gibson¹, Lara D'Agata¹, Parker McLeod², Ferhat Yaman², Amitabh Das², Ian Colbert², José Cano¹ ¹University of Glasgow, UK ²AMD

> **EuroMLSys workshop @ EuroSys 2025** Rotterdam, The Netherlands, 31/03/2025

Key concept: Deep Learning Acceleration Stack (DLAS)

Neural Network Models & Datasets (Image, video, voice, text, etc)

Optimization Techniques (Pruning, quantization, NAS/HPO, etc)

Algorithmic Primitives & Data Formats (GEMM, Winograd, CSR, Encryption, etc)

Systems Software (Libraries, frameworks, compilers, etc)

Hardware (Server class, Edge/IoT/Tiny devices)

Across-stack optimizations are required to provide efficient solutions!

[P. Gibson, <u>J. Cano</u>, E. J. Crowley, A. Storkey, M. O'Boyle, "*DLAS: A Conceptual Model for Across-Stack Deep Learning Acceleration*", **ACM TACO'25**]

Outline

Introduction

Methodology

Evaluation

• Conclusions and Future Work

Introduction

- Deployment of DNNs has raised privacy concerns, particularly where sensitive user data is involved
- Fully Homomorphic Encryption (FHE) allows for computation on encrypted data

Introduction

- While FHE is promising, currently the computational cost is prohibitive to its adoption
 - We observed ~10⁶ slower execution time than plaintext matrix multiplication (matmul)

- As matmul is the majority of computation during DNN inference, we target it for optimization
 - Specifically unstructured sparsity

• To our knowledge, no public implementations of sparsity utilization in FHE matrix multiplication

• We implement sparse FHE inference using server/client with a simple MNIST model in the repository

Methodology

- Three predominant schemes in FHE
 - **BFV/BGF**: Exact integer arithmetic, often overflows in the context of quantised DNN inference
 - CKKS: Approximate floating point computation, faster bootstrapping algorithms

- As we perform computations in FHE, the ciphertexts accumulate 'noise'
 - Some noise is permissible in the context of DNNs

- If this noise exceeds a threshold, we cannot reliably decrypt it
 - Bootstrapping is a technique for refreshing the noise 'budget' without decrypting, however it is a computationally expensive operation

Methodology

- We adapt plaintext sparse encoding schemes: **CSR** and **ELLPACK**
- CSR composed of: an array of values V, an array of row index pointers R, an array of column indices C
 - Our scheme encrypts V while leaving R and C unencrypted; similarly the ELLPACK format exposes metadata about the structure of the sparsity
 - Exposing this metadata is necessary for accelerating computation as we cannot determine if an encrypted value is zero at multiplication time
 - For some applications this may not be acceptable still (i.e. One-Hot encoding), in this case we can encrypt user input as if it were a dense matrix and multiply with the sparse server matrices, trading some runtime for efficiency

Methodology

 In order to reduce noise and runtime, we aim to reduce the amount of rotations we have to perform on a ciphertext

- We achieve this by chunking matrix values into encrypted vectors
 - i.e. for a chunk size of 2, we encode a maximum of 2 values in an encrypted vector

- We also utilize multi-threading by allocating one thread per resultant value
 - Allows our multithreading scheme to scale arbitrarily with thread count and matrix size

No Chunking

Chunking n=2

Evaluation

- We evaluate our sparse schemes against two baselines
 - Our implementation of naïve dense-dense multiplication in FHE
 - A SOTA implementation, HEMat, restricted to n² x m² matrices (we only evaluate these sizes)

- We sample
 - Matrix values from a normal distribution that emulates neural network initialisation
 - Then zero values until we reach a desired sparsity threshold

• We perform matrix multiplication in plaintext with the Eigen3 library to verify correctness (within ε=10-3)

• All evaluations conducted on an AMD EPYC 7V13 64-core CPU on the AMD HPC cluster

Results: 1 thread

- With 1 thread at 8x8 matrix sizes, we observe
 - Our sparse schemes perform better than the naïve baseline at all sparsity levels

 A departure from plaintext, where we typically see a 'break-even' point

There is very little variation between the different sparse schemes

Results: multi-threading

- Our multi-threading scheme appears to scale better than the HEMat baseline
 - The sparse schemes still maintain a performance advantage at all sparsity levels
- In the future we will investigate how this transfers to GPUs

Results: matrix size

- Previous evaluations were conducted with matrix sizes of 8x8, the smallest size that can saturate our CPU's thread count and conform to HEMat's requirements
 - DNN layers are often much larger, so we test how our algorithms scale with respect to matrix size
- Relative to HEMat, they scale poorly, due to the underlying algorithmic complexity advantage of HEMat
 - For many real applications our schemes still provide an increased performance

Results: corretness

• We verify all the algorithms for **correctness** at different sparsity levels

- Our proposed schemes are inherently more accurate as sparsity increases
 - Since zero values can be computed outwith the FHE domain, eliminating noise

- Our implementations are, on average, more ٠ accurate than the HEMat implementation
 - Average increase in accuracy of 7.6 x 10⁻⁴

Sparsity	Dense	HEMat	CSR	ELLPACK	Naive	
0.0	5.98E-09	1.34E-03	6.03E-09	6.97E-09	6.66E-09	
0.1	5.63E-09	1.44E-03	5.74E-09	6.01E-09	5.14E-09	
0.2	5.47E-09	1.35E-03	5.15E-09	5.77E-09	6.44E-09	
0.3	6.03E-09	1.27E-03	6.29E-09	4.59E-09	5.11E-09	
0.4	4.84E-09	6.81E-04	3.45E-09	3.21E-09	3.38E-09	
0.5	5.75E-09	7.64E-04	3.24E-09	4.36E-09	3.55E-09	
0.6	5.06E-09	5.02E-04	2.72E-09	2.24E-09	2.80E-09	
0.7	4.73E-09	3.96E-04	1.38E-09	1.32E-09	1.77E-09	
0.8	4.84E-09	1.96E-04	5.44E-10	5.92E-10	1.31E-09	
0.9	4.61E-09	8.80E-05	2.85E-10	2.91E-10	1.28E-09	
1.0	4.40E-09	3.15E-06	0.00E+00	0.00E+00	8.90E-10	

Sp

Bold values indicate the most accurate scheme for a given sparsity level

- We have proposed matrix multiplication schemes in FHE that exploit unstructured sparsity in the context of DNN inference
 - With a 2.5x performance increase at 50% sparsity

 We provide a method for multithreading these sparse computations which exhibits strong scaling behavior

- In the **future** we will be exploring
 - Sparsity utilization on GPUs
 - Extending usage of sparsity to better algorithmic complexity
 - Demonstrating sparsity on high dimensional matrices (in SLMs, ...)

Exploiting Unstructured Sparsity in Fully Homomorphic Encrypted DNNs

Aidan Ferguson¹, Perry Gibson¹, Lara D'Agata¹, Parker McLeod², Ferhat Yaman², Amitabh Das², Ian Colbert², José Cano¹ ¹University of Glasgow, UK ²AMD

Thank you! Questions?

Paper