
Aidan Ferguson1, Perry Gibson1, Lara D'Agata1, Parker McLeod2,
Ferhat Yaman2, Amitabh Das2, Ian Colbert2, José Cano1

1University of Glasgow, UK 2AMD

EuroMLSys workshop @ EuroSys 2025
Rotterdam, The Netherlands, 31/03/2025

Exploiting Unstructured Sparsity in Fully
Homomorphic Encrypted DNNs

Key concept: Deep Learning Acceleration Stack (DLAS)

[P. Gibson, J. Cano, E. J. Crowley, A. Storkey, M. O'Boyle, “DLAS: A Conceptual Model for Across-Stack Deep

Learning Acceleration”, ACM TACO’25]

Neural Network Models & Datasets
(Image, video, voice, text, etc)

Optimization Techniques
(Pruning, quantization, NAS/HPO, etc)

Algorithmic Primitives & Data Formats
(GEMM, Winograd, CSR, Encryption, etc)

Systems Software
(Libraries, frameworks, compilers, etc)

Hardware
(Server class, Edge/IoT/Tiny devices)

Across-stack

optimizations

are required to

provide efficient

solutions!

2

Outline

• Introduction

• Methodology

• Evaluation

• Conclusions and Future Work

3

Introduction

• Deployment of DNNs has raised privacy concerns, particularly where sensitive user data is involved

• Fully Homomorphic Encryption (FHE) allows for computation on encrypted data

4

Introduction

• While FHE is promising, currently the computational

cost is prohibitive to its adoption

– We observed ~106 slower execution time than

plaintext matrix multiplication (matmul)

• As matmul is the majority of computation during DNN

inference, we target it for optimization

– Specifically unstructured sparsity

• To our knowledge, no public implementations of

sparsity utilization in FHE matrix multiplication

5

Methodology

6

• We implement sparse FHE inference using server/client with a simple MNIST model in the repository

– Model weights are known

only to server, but

encrypted during inference

– F represents applicable

activation functions in FHE

Methodology

7

• Three predominant schemes in FHE

– BFV/BGF: Exact integer arithmetic, often overflows in the context of quantised DNN inference

– CKKS: Approximate floating point computation, faster bootstrapping algorithms

• As we perform computations in FHE, the ciphertexts accumulate 'noise’

– Some noise is permissible in the context of DNNs

• If this noise exceeds a threshold, we cannot reliably decrypt it

– Bootstrapping is a technique for refreshing the noise 'budget' without decrypting, however it is a

computationally expensive operation

Methodology

8

• We adapt plaintext sparse encoding schemes: CSR and ELLPACK

• CSR composed of: an array of values V, an array of row index pointers R, an array of column indices C

– Our scheme encrypts V while leaving R and C unencrypted; similarly the ELLPACK format exposes

metadata about the structure of the sparsity

– Exposing this metadata is necessary for accelerating computation as we cannot determine if an

encrypted value is zero at multiplication time

– For some applications this may not be acceptable still (i.e. One-Hot encoding), in this case we can

encrypt user input as if it were a dense matrix and multiply with the sparse server matrices, trading

some runtime for efficiency

Methodology

9

• In order to reduce noise and runtime, we aim to reduce the amount of rotations we have to perform on a

ciphertext

• We achieve this by chunking matrix values into

encrypted vectors

– i.e. for a chunk size of 2, we encode a maximum

of 2 values in an encrypted vector

• We also utilize multi-threading by allocating one thread

per resultant value

– Allows our multithreading scheme to scale arbitrarily

with thread count and matrix size

Evaluation

• We evaluate our sparse schemes against two baselines

– Our implementation of naïve dense-dense multiplication in FHE

– A SOTA implementation, HEMat, restricted to n2 x m2 matrices (we only evaluate these sizes)

• We sample

– Matrix values from a normal distribution that emulates neural network initialisation

– Then zero values until we reach a desired sparsity threshold

• We perform matrix multiplication in plaintext with the Eigen3 library to verify correctness (within ε=10-3)

• All evaluations conducted on an AMD EPYC 7V13 64-core CPU on the AMD HPC cluster

10

Results: 1 thread

• With 1 thread at 8x8 matrix sizes, we observe

– Our sparse schemes perform better than the

naïve baseline at all sparsity levels

– A departure from plaintext, where we typically

see a 'break-even' point

– There is very little variation between the different

sparse schemes

11

Results: multi-threading

• Our multi-threading scheme appears to scale better than the HEMat baseline

– The sparse schemes still maintain a performance advantage at all sparsity levels

• In the future we will investigate how this transfers to GPUs

12

1 Thread 16 Threads - 13x 64 Threads – 32.5x

Results: matrix size

• Previous evaluations were conducted with matrix sizes of 8x8, the smallest size that can saturate our

CPU's thread count and conform to HEMat's requirements

– DNN layers are often much larger, so we test how our algorithms scale with respect to matrix size

• Relative to HEMat, they scale poorly, due to the underlying algorithmic complexity advantage of HEMat

– For many real applications our schemes still provide an increased performance

13

16x16 32x32

Results: corretness

• We verify all the algorithms for correctness at

different sparsity levels

• Our proposed schemes are inherently more

accurate as sparsity increases

– Since zero values can be computed outwith the

FHE domain, eliminating noise

• Our implementations are, on average, more

accurate than the HEMat implementation

– Average increase in accuracy of 7.6 x 10-4

14

Bold values indicate the most accurate scheme

for a given sparsity level

Conclusions

• We have proposed matrix multiplication schemes in FHE that exploit unstructured sparsity in the

context of DNN inference

– With a 2.5x performance increase at 50% sparsity

• We provide a method for multithreading these sparse computations which exhibits strong scaling

behavior

• In the future we will be exploring

– Sparsity utilization on GPUs

– Extending usage of sparsity to better algorithmic complexity

– Demonstrating sparsity on high dimensional matrices (in SLMs, …)

15

Aidan Ferguson1, Perry Gibson1, Lara D'Agata1, Parker McLeod2,
Ferhat Yaman2, Amitabh Das2, Ian Colbert2, José Cano1

1University of Glasgow, UK 2AMD

Thank you! Questions?

Exploiting Unstructured Sparsity in Fully
Homomorphic Encrypted DNNs

PaperCode

