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Key concept: Deep Learning Acceleration Stack (DLAS)

[P. Gibson, J. Cano, E. J. Crowley, A. Storkey, M. O'Boyle, “DLAS: A Conceptual Model for Across-Stack Deep 

Learning Acceleration”, ACM TACO’25]

Neural Network Models & Datasets
(Image, video, voice, text, etc)

Optimization Techniques 
(Pruning, quantization, NAS/HPO, etc)

Algorithmic Primitives & Data Formats
(GEMM, Winograd, CSR, Encryption, etc)

Systems Software
(Libraries, frameworks, compilers, etc)

Hardware 
(Server class, Edge/IoT/Tiny devices)

Across-stack 

optimizations 

are required to 

provide efficient 

solutions!
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Introduction

• Deployment of DNNs has raised privacy concerns, particularly where sensitive user data is involved

• Fully Homomorphic Encryption (FHE) allows for computation on encrypted data
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Introduction

• While FHE is promising, currently the computational 

cost is prohibitive to its adoption

– We observed ~106 slower execution time than 

plaintext matrix multiplication (matmul)

• As matmul is the majority of computation during DNN 

inference, we target it for optimization

– Specifically unstructured sparsity

• To our knowledge, no public implementations of 

sparsity utilization in FHE matrix multiplication

5



Methodology
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• We implement sparse FHE inference using server/client with a simple MNIST model in the repository

– Model weights are known 

only to server, but 

encrypted during inference

– F represents applicable 

activation functions in FHE



Methodology

7

• Three predominant schemes in FHE

– BFV/BGF: Exact integer arithmetic, often overflows in the context of quantised DNN inference

– CKKS: Approximate floating point computation, faster bootstrapping algorithms

• As we perform computations in FHE, the ciphertexts accumulate 'noise’

– Some noise is permissible in the context of DNNs 

• If this noise exceeds a threshold, we cannot reliably decrypt it

– Bootstrapping is a technique for refreshing the noise 'budget' without decrypting, however it is a 

computationally expensive operation



Methodology
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• We adapt plaintext sparse encoding schemes: CSR and ELLPACK

• CSR composed of:  an array of values V, an array of row index pointers R, an array of column indices C

– Our scheme encrypts V while leaving R and C unencrypted; similarly the ELLPACK format exposes 

metadata about the structure of the sparsity

– Exposing this metadata is necessary for accelerating computation as we cannot determine if an 

encrypted value is zero at multiplication time

– For some applications this may not be acceptable still (i.e. One-Hot encoding), in this case we can 

encrypt user input as if it were a dense matrix and multiply with the sparse server matrices, trading 

some runtime for efficiency



Methodology
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• In order to reduce noise and runtime, we aim to reduce the amount of rotations we have to perform on a 

ciphertext

• We achieve this by chunking matrix values into 

encrypted vectors

– i.e. for a chunk size of 2, we encode a maximum 

of 2 values in an encrypted vector

• We also utilize multi-threading by allocating one thread 

per resultant value

– Allows our multithreading scheme to scale arbitrarily

with thread count and matrix size



Evaluation

• We evaluate our sparse schemes against two baselines

– Our implementation of naïve dense-dense multiplication in FHE

– A SOTA implementation, HEMat, restricted to n2 x m2 matrices (we only evaluate these sizes)

• We sample 

– Matrix values from a normal distribution that emulates neural network initialisation

– Then zero values until we reach a desired sparsity threshold

• We perform matrix multiplication in plaintext with the Eigen3 library to verify correctness (within ε=10-3)

• All evaluations conducted on an AMD EPYC 7V13 64-core CPU on the AMD HPC cluster
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Results: 1 thread

• With 1 thread at 8x8 matrix sizes, we observe

– Our sparse schemes perform better than the

naïve baseline at all sparsity levels

– A departure from plaintext, where we typically

see a 'break-even' point

– There is very little variation between the different 

sparse schemes
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Results: multi-threading

• Our multi-threading scheme appears to scale better than the HEMat baseline

– The sparse schemes still maintain a performance advantage at all sparsity levels

• In the future we will investigate how this transfers to GPUs
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1 Thread 16 Threads - 13x 64 Threads – 32.5x



Results: matrix size

• Previous evaluations were conducted with matrix sizes of 8x8, the smallest size that can saturate our 

CPU's thread count and conform to HEMat's requirements

– DNN layers are often much larger, so we test how our algorithms scale with respect to matrix size

• Relative to HEMat, they scale poorly, due to the underlying algorithmic complexity advantage of HEMat

– For many real applications our schemes still provide an increased performance
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Results: corretness

• We verify all the algorithms for correctness at 

different sparsity levels

• Our proposed schemes are inherently more 

accurate as sparsity increases

– Since zero values can be computed outwith the 

FHE domain, eliminating noise

• Our implementations are, on average, more 

accurate than the HEMat implementation

– Average increase in accuracy of 7.6 x 10-4
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Bold values indicate the most accurate scheme 

for a given sparsity level



Conclusions

• We have proposed matrix multiplication schemes in FHE that exploit unstructured sparsity in the 

context of DNN inference

– With a 2.5x performance increase at 50% sparsity

• We provide a method for multithreading these sparse computations which exhibits strong scaling 

behavior

• In the future we will be exploring

– Sparsity utilization on GPUs

– Extending usage of sparsity to better algorithmic complexity

– Demonstrating sparsity on high dimensional matrices (in SLMs, …)
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