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Motivation:
Cost and Complexity ot DNN Training

Growing economic and environmental costs of DNN training.
Retraining with evolving data is inefficient and costly.

Traditional DNNs couple linear and non-linear transformations.



Basic concepts

Active or Inactive Neuron: A

neuron whose activation / Bias active path
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function (ReLU) produces a

positive output for a given

input; or a neuron that produces

zero output.
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\ Inactive path

Inactive neuron

Activation Pattern: The specific
set of active neurons

corresponding to a given input.



Basic concepts

Activation Pattern: The specific @— @ g g2
set of active neurons g o, g Bias active path
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corresponding to a given input.

Active Path: A sequence of active

neurons forming a continuous
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Basic concepts

Path Weight: The product of all
the weights along a given path,

.

including bias terms for bias

ReLU activation function\ Full active path

paths.
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Key Idea: Decoupling SK and QK in
ReLU-based DNNs

Structural Knowledge: C @_ ...... - @ @'-'d Active paths

Determines which neurons and

paths are activated for a given o) s A o 0

input, which captures the non- R

linear behaviour of the DNN. o :::'___:




Key Idea: Decoupling SK and QK in
ReLU-based DNNs

Quantitative Knowledge: Path weights
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Key Idea: Decoupling SK and QK in
ReLU-based DNNs

Structural Knowledge: Determines which neurons and paths are activated for
a given input, which captures the non-linear behaviour of the DNN.
Quantitative Knowledge: Consists of the weights and biases used for

computing outputs, turning the output calculation into a fully linear system.

Hypothesis 1: Structural Knowledge stabilizes quickly during training.
Hypothesis 2: Quantitative Knowledge can be re-trained and improve
accuracy compared of training both Structural Knowledge and Quantitative

Knowledge.



Experiment 1

Hypothesis 1: Structural Knowledge stabilizes quickly during training.
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Experiment 1

Activation pattern differences during training, measuring how
often the activation state of the DNN neurons changes for a set of samples,

compared to training and validation loss.

AlexNet - CIFAR-10
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Proot-of-concept system

Path Selector: Extracts Structural Knowledge from a pre-trained model and is

only responsible to determine wich paths are active.

Estimator: Trains only Quantitative Knowledge for improved efficiency, only

the path weights are trained, while the path activation state is extracted by the

Path Selector.
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Experiment 2

Step 1: Initial training of DNN with n samples.
Step 2: One copy as Path Selector and one copy as initial Estimator.

Step 3: Inference with the Path Selector with n+m samples and extract activations.
Step 4: Train the Estimator with n+m samples.

Re-training System
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Experiment 2
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Conclusions

» The Structural Knowledge stabilizes faster than the Quantitative Knowledge
during training.
» Decoupling the Structural Knowledge and the Quantitative Knowledge,

freezing the Structural Knowledge and training only Quantitative Knowledge.

Future work: Develop an Al System that is capable of reducing training or

retraining time, updating only the Quantitative Knowledge.



