

<EURO/S

Towards Asynchronous Peer-to-Peer Federated Learning for Heterogeneous Systems

Christos Sad*, George Retsinas[¶], Dimitrios Soudris[¶], Kostas Siozios^{*} and Dimosthenis Masouros[¶]

- o Federated Learning (FL)
 - o Decentralized training approach
 - Collaborative training over distributed privacy-sensitive data
- o Traditional FL relies on:
 - o Centralized aggregation
 - o Synchronous model updates
 - o "Static" and global weight aggregation protocol

<EURO/S

Towards Asynchronous Peer-to-Peer Federated Learning for Heterogeneous Systems

Christos Sad*, George Retsinas[¶], Dimitrios Soudris[¶], Kostas Siozios^{*} and Dimosthenis Masouros[¶]

We propose a **Peer-to-Peer** training scheme for Federated Learning

- o Avoids single points of failure
- Relies on asynchronous model updates, tackling stragglers
- o Takes into account data heterogeneity

Results on CIFAR10/CIFAR100 datasets shows that we can achieve

~ 5% - 38% better accuracy

compared to traditional FedAVG and FedSGD algorithms!

