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• Multiple use-cases
• Keyboard personalization, virtual assistants

Federated Learning

2

https://research.google/blog/federated-learning-collaborative-machine-learning-without-centralized-training-data/
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FL jobs run for several days

Clients become unavailable intermittently

Client Dynamics in FL Training
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Client Availability 10-20% 20-80% 10-60%
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Is SOTA FL Robust to Realistic 
Client Unavailability?



• Straggler clients
• Return updates with a delay

• AsyncFL mitigates stragglers

• Unavailable clients
• Cannot participate at all

Prolonged Straggler = Unavailability?

Stragglers
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FL Selection Algorithms Are Availability Unaware

6

SyncFL

OR

AsyncFL

Select 

K

Delayed

Halted

R
o

u
n
d

 p
ro

g
re

s
s

Client

Pool

Available

Unavailable



Systems Mechanisms for Client Availability
Unaware (Flower[4], Flame[5])
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Impact of 
Client Unavailability



Success Metric

Time-to-accuracy
• Better ML convergence

• Resource efficiency

Task
• Image classification on CIFAR-10

• 300 clients

Experiments: Setup 
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Execution Strategies



Experiments: Workload Characteristics

Client Availability Traces
• Synthetic: Availability ~80%

• Real-world: Availability 10-22%

Data heterogeneity
• Homogenous (⍺=100)

• Heterogeneous (⍺=0.1)
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Large Accuracy Fall With Modest Unavailability 

~10% accuracy drop in unaware strategies
• Modest 20% drop in availability

Training progresses slower due to stalls

AsyncFL: more resilient than SyncFL
• OORT(20%) loses 11%

• A-OORT(20%) loses 9.5%
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Results on Synthetic Trace



Strategies Break Down in
Real-World Settings

Achieve 46-57% higher accuracy even in 
10-22% client availability

• Availability awareness

AsyncFL gains over SyncFL reduce as 
heterogeneity increases

• Stale updates constrain model training
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Opportunities in 
Resolving Unavailability



• Client selection based on holistic tracking
• Selector: Fetches accurate, real-time client availability

• Utilize: Current & historical client capabilities

• Efficient aggregation by managing staleness
• Not all stale updates are equal

• Moderately stale updates can contribute to training [7]

• Mitigate unavailability impact by using received updates

Make FL Systems and Algorithms Robust
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• SOTA FL breaks down at high client unavailability
• Accuracy degrades by up-to 57% in real-world traces

• Data heterogeneity exacerbates training difficulty

• Availability awareness reduces:
• Aggregation stalls by 94%

• Staleness of updates by 65%

• Opportunity: Make FL Systems + Algorithms Robust to Unavailability
• Holistic and tracking-based client selection

• Efficient aggregation by managing staleness

Summary
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