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Problem: Quantization is popular in distributed learning but does not support Allreduce

Solution: Design an Allreduce-compatible Quantization using Global Norm

Standard Dithering

0 MAX_INTn n+1p

d 1-d

E.g. quantize to 8 bits -> [-127,127]
• Normalize input to [-1, 1] by

GlobalNorm
• Scale input to [-127, 127], denote as p
• Random Round P to two nearest

intervals, based on distances:
W.P. d to n+1; W.P. 1-d to n

Exponential Dithering

0 MAX_INT2−𝑛𝑛−1 2−𝑛𝑛p

d 1-d

E.g. quantize to 8 bits -> [-127,127]
• Normalize input to [-1, 1] by

GlobalNorm
• Represent input = 2−𝑝𝑝, denote as p
• Random Round P to two nearest

intervals, based on distances:
W.P. d to n+1; W.P. 1-d to n

• Quantization requires a “Scaling Factor”

• “Scaling Factor” are calculated locally

• Scaled by different factor, quantized gradients cannot
be aggregated directly

Global-QSGD: 2 round Allreduce protocol
1. Each GPU finds local norm
2. 1st-round Allreduce to exchange the Global Norm
3. Each GPU Quantize by Global Norm
4. 2nd-round Allreduce to exchange quantized data
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