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LLM Serving frameworks
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(Routing Algorithm)

Model Scheduler
(Batching 
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KV cache management, parallelism strategies, prefill chunking, p/d disaggregation, etc



What does a router need to decide?

• Where to route
• Across multiple model instances
• Question answered by most routing algorithms in use today

• When to route
• Waiting for the right time, when most information is available
• This is not done by the LLM routers today



What are the factors that impact the E2E 
latency?
• Request type

• Input length
• Output length

• Effect of batching with other requests
• Longer batch times
• Preemption due to KV cache out-of-memory

• Queuing Delay



Routing and Batching Algorithm Space

• We test three batching and 
three routing strategies 

• We use four synthetic datasets 
for evaluations

Batching Strategies
Firs Come First Serve 
(FCFS)

Least Work Left (LWL) Bin Packing

Earliest request gets 
served first

Request with least 
decode tokens are 
prioritized

Requests with most 
decode tokens are 
prioritized

Routing Strategies
Dedicated Small Large Round Robin/ JSQ Decode Balancers

One model is reserved 
for large requests

Iterate through models 
one by one

Balance decode tokens 
to produce across 
models

Dataset 1
Random requests

Dataset 2
Heavy-light randomly

Dataset 3
Heavy, then light

Dataset 4
Light, then heavy



Importance of routing algorithm

JSQ performs very similar to Round Robin

A good routing algorithm improves upon any batching algorithm and 
workload mix



What does a router need to know?

• Current state across the model instances
• Impact of routing the latest request to a given instance

• Impact depends on the incoming request
• Impact depends on the types of requests already running in the instance
• Impact depends on how loaded the model instance already is

Output length of any of these requests is not known while routing or 
batching



Output length prediction

•  ^ Prior work uses output length prediction 
to size KV allocation

• DistillBERT fine-tuned
• Maximum length allowed by the model is 

divided into equal sized buckets
• We tried five different workloads

• summarization, sentiment analysis, in-context 
QnA, no-context QnA, translation

• We find that
• The distributions are workload-specific
• The distributions tend to be dense around 

specific regions
• Unequal bucket sizes make more sense!



Decode length prediction results

Method Top-1 Accuracy

Unequal buckets, with tasks (Proposed Approach) 73%

Unequal buckets, without tasks 9.3%

Equal buckets (512 size), with tasks 65%

Equal buckets (512 size), without tasks 5.5%



What does a router need to know?

• Current state across the model instances
• Impact of routing the latest request to a given instance

• Impact depends on the incoming request
• Impact depends on the types of requests already running in the instance
• Impact depends on how loaded the model instance already is

Output length of any of these requests is not known while routing or 
batching

A workload impact estimator is needed: We use the profiles to compile 
this analytical estimator (details in the paper)



Router design
What does a router need to decide?
• Where to route

• Across multiple model instances
• Question answered by most routing algorithms in use today

• When to route
• Waiting for the right time, when most information is available
• This is not done by the LLM routers today



We propose lightweight Reinforcement 
Learning (RL)
• LLM workloads have distinct prefill (prompt) and decode phases, 

which have different compute and memory demands.
• Mixing requests with diverse characteristics (e.g., heavy prompt 

vs. heavy decode) at the same instance can cause latency spikes.
• Assigning the right request to the right instance at the right time is 

critical.
• RL is a good fit here because the problem is sequential, dynamic, 

and stateful—the system learns from feedback (latency, queue 
times, etc.) over time.



RL Formulation – Action Space

Model 1

Model 2

Model N

Do nothing



RL Formulation
• A discrete-time Markov Decision Process (MDP):

States S: At time t, state includes:
• Number of requests in the queue 𝑤𝑤𝑞𝑞𝑞𝑞
• New prompt length 𝑝𝑝𝑡𝑡 and estimated decode length bucket 𝑑𝑑𝑡𝑡
• Matrices 𝑃𝑃𝑡𝑡,𝐷𝐷𝑡𝑡distributions of prompt and decode token lengths across 

model instances
• Model instance capacities 𝐶𝐶𝑡𝑡
• Estimated completion time of the earliest request per instance 𝑇𝑇𝑐𝑐𝑐𝑐



RL Formulation

Actions A: Choose one of m model instances to assign the incoming 
request to, or delay assignment.

Transition P: Determined by the system dynamics as requests are routed and 
completed.

Reward: Reward function balances:
1.  Penalty for queueing delays
2.  Reward for completing a request



Workload (heuristic)-guided RL Formulation
Actions A: Choose one of m model instances to assign the incoming 
request to, or delay assignment.

Transition P: Determined by the system dynamics as requests are routed and 
completed.

Reward: Reward function balances:
1.  Penalty for queueing delays
2.  Reward for completing a request
3.  Penalty for bad workload mixing, based on a learned workload impact 
estimator (latency spike model)



Final reward formulation

The mixing cost heuristic penalizes routing decisions that cause bad mixing 
(leading to latency spikes). We slowly decay it.

Without guidance: RL can flail around for a long time before discovering good 
routing strategies.
With guidance: The agent starts off making "reasonable" decisions, guided by 
known good behaviors, then gradually finds better ones.
It's like teaching someone chess by letting them follow book openings at first — but 
eventually they figure out new tactics on their own.



We try three variants of RL

• Baseline RL: Without the heuristic
• Workload-aware RL: With the heuristic, without the decay
• Workload-guided RL: With the heuristic gradually decaying



Results – End-to-end latency

• Servicing 2000 requests with 4 
model instances (V100, Llama-
2-7b)

• Using Round Robin as 
benchmark

Improvements
• Baseline RL 7.54 seconds (4.35%)
• Workload Aware RL  13.50 seconds (7.79%)
• Workload Guided RL  19.18 seconds (11.43%)



Results – Time Between Tokens (TBT)

• Calculated after first token is 
generated

• Distribution plot shows lesser 
variance in average TBT

TBT no longer spikes because of 
incoming prompts!



Results – Waiting Time at Router and Model

Waiting Time (s)

2.05

Workload 
Guided RL 

Near 0 waiting 
time and 

preemption at 
model

4.41

Workload Aware 
RL 

High waiting 
time at router

0.59

Baseline RL 
Longer queues 

and preemption 
at model



Results – Generalizability and Scalability

Our method is generalizable to 
different hardwares, prefill 

chunking and more instances!



Highlights Fixed shortcomings of SOTA. 
Improved performance 

from ~8% to 73% !

First of a kind 
study on impact of 
mixing workloads

RL based router with the aim 
to minimize E2E latency. Learning 

guided with workload mixing impact

Upto 11% reduction in 
average E2E 

latency over current 
methods!



Questions?



Experimental Details – Infrastructure

• 4 model instances, each managed with vLLM (FCFS scheduler)
• Hardware: V100
• Model: Llama 2 7B
• Datasets: Books (translation), IMDb (sentiment analysis), SQuAD 

(in-context QnA), Elli5 Reddit (no-context QnA), WNUT (entity 
recognition)

• 2000 requests



Experimental Details – Hyperparameters

• Arrival rate: 20 requests per second
• Action interval: 0.02 seconds (minimum decode iteration time)
• Exploration factor: decays within episode from 0.99 for first 30 

episodes (decay factor 0.5)



Workload Impact Estimator

Calculate impact of mixing as 
linear combination of two

Latency due to prefill and 
decode tokens increases 

linearly



Motivation

Prefill

Where is 
EuroSys’25?

Iteration 1

Decode
Iteration 2 Iteration 3 Iteration 4

In Rotterdam, Amsterdam.

Figure courtesy of “Taming Throughput-Latency Tradeoff in LLM Inference with 
Sarathi-Serve” at OSDI’24



Motivation

Prefill

Where is 
EuroSys’25?

Iteration 1

Decode
Iteration 2 Iteration 3 Iteration 4

In Rotterdam, Amsterdam.

Single request needs 
multiple passes through the 

model for completion

Input shape varies between 
requests



Motivation

Prefill

Where is 
EuroSys’25?

Iteration 1

Decode
Iteration 2 Iteration 3 Iteration 4

In Rotterdam, Amsterdam.

Prompt and decode phase have different characteristics

Compute intensive Memory intensive



Motivation

Prefill

Where is 
EuroSys’25?

Iteration 1

Decode
Iteration 2 Iteration 3 Iteration 4

In Rotterdam, Amsterdam.

?

Output length is hard to predict. Depends on task type 
and prompt source
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