
Performance Aware LLM Load Balancer for Mixed Workloads

Kunal Jain, Anjaly Parayil, Ankur Mallick, Esha Choukse, Xiaoting Qin, Jue Zhang, Íñigo Goiri, Rujia Wang, Chetan
Bansal, Victor Rühle, Anoop Kulkarni, Steve Kofsky, Saravan Rajmohan

1

The 5th Workshop on Machine Learning and Systems (EuroMLSys)
March 31, 2025

LLM Serving frameworks

Global Scheduler
(Routing Algorithm)

Model Scheduler
(Batching
Algorithm)

Model Scheduler
(Batching
Algorithm)

Model Scheduler
(Batching
Algorithm)

KV cache management, parallelism strategies, prefill chunking, p/d disaggregation, etc

What does a router need to decide?

• Where to route
• Across multiple model instances
• Question answered by most routing algorithms in use today

• When to route
• Waiting for the right time, when most information is available
• This is not done by the LLM routers today

What are the factors that impact the E2E
latency?
• Request type

• Input length
• Output length

• Effect of batching with other requests
• Longer batch times
• Preemption due to KV cache out-of-memory

• Queuing Delay

Routing and Batching Algorithm Space

• We test three batching and
three routing strategies

• We use four synthetic datasets
for evaluations

Batching Strategies
Firs Come First Serve
(FCFS)

Least Work Left (LWL) Bin Packing

Earliest request gets
served first

Request with least
decode tokens are
prioritized

Requests with most
decode tokens are
prioritized

Routing Strategies
Dedicated Small Large Round Robin/ JSQ Decode Balancers

One model is reserved
for large requests

Iterate through models
one by one

Balance decode tokens
to produce across
models

Dataset 1
Random requests

Dataset 2
Heavy-light randomly

Dataset 3
Heavy, then light

Dataset 4
Light, then heavy

Importance of routing algorithm

JSQ performs very similar to Round Robin

A good routing algorithm improves upon any batching algorithm and
workload mix

What does a router need to know?

• Current state across the model instances
• Impact of routing the latest request to a given instance

• Impact depends on the incoming request
• Impact depends on the types of requests already running in the instance
• Impact depends on how loaded the model instance already is

Output length of any of these requests is not known while routing or
batching

Output length prediction

• ^ Prior work uses output length prediction
to size KV allocation

• DistillBERT fine-tuned
• Maximum length allowed by the model is

divided into equal sized buckets
• We tried five different workloads

• summarization, sentiment analysis, in-context
QnA, no-context QnA, translation

• We find that
• The distributions are workload-specific
• The distributions tend to be dense around

specific regions
• Unequal bucket sizes make more sense!

Decode length prediction results

Method Top-1 Accuracy

Unequal buckets, with tasks (Proposed Approach) 73%

Unequal buckets, without tasks 9.3%

Equal buckets (512 size), with tasks 65%

Equal buckets (512 size), without tasks 5.5%

What does a router need to know?

• Current state across the model instances
• Impact of routing the latest request to a given instance

• Impact depends on the incoming request
• Impact depends on the types of requests already running in the instance
• Impact depends on how loaded the model instance already is

Output length of any of these requests is not known while routing or
batching

A workload impact estimator is needed: We use the profiles to compile
this analytical estimator (details in the paper)

Router design
What does a router need to decide?
• Where to route

• Across multiple model instances
• Question answered by most routing algorithms in use today

• When to route
• Waiting for the right time, when most information is available
• This is not done by the LLM routers today

We propose lightweight Reinforcement
Learning (RL)
• LLM workloads have distinct prefill (prompt) and decode phases,

which have different compute and memory demands.
• Mixing requests with diverse characteristics (e.g., heavy prompt

vs. heavy decode) at the same instance can cause latency spikes.
• Assigning the right request to the right instance at the right time is

critical.
• RL is a good fit here because the problem is sequential, dynamic,

and stateful—the system learns from feedback (latency, queue
times, etc.) over time.

RL Formulation – Action Space

Model 1

Model 2

Model N

Do nothing

RL Formulation
• A discrete-time Markov Decision Process (MDP):

States S: At time t, state includes:
• Number of requests in the queue 𝑤𝑤𝑞𝑞𝑞𝑞
• New prompt length 𝑝𝑝𝑡𝑡 and estimated decode length bucket 𝑑𝑑𝑡𝑡
• Matrices 𝑃𝑃𝑡𝑡,𝐷𝐷𝑡𝑡distributions of prompt and decode token lengths across

model instances
• Model instance capacities 𝐶𝐶𝑡𝑡
• Estimated completion time of the earliest request per instance 𝑇𝑇𝑐𝑐𝑐𝑐

RL Formulation

Actions A: Choose one of m model instances to assign the incoming
request to, or delay assignment.

Transition P: Determined by the system dynamics as requests are routed and
completed.

Reward: Reward function balances:
1. Penalty for queueing delays
2. Reward for completing a request

Workload (heuristic)-guided RL Formulation
Actions A: Choose one of m model instances to assign the incoming
request to, or delay assignment.

Transition P: Determined by the system dynamics as requests are routed and
completed.

Reward: Reward function balances:
1. Penalty for queueing delays
2. Reward for completing a request
3. Penalty for bad workload mixing, based on a learned workload impact
estimator (latency spike model)

Final reward formulation

The mixing cost heuristic penalizes routing decisions that cause bad mixing
(leading to latency spikes). We slowly decay it.

Without guidance: RL can flail around for a long time before discovering good
routing strategies.
With guidance: The agent starts off making "reasonable" decisions, guided by
known good behaviors, then gradually finds better ones.
It's like teaching someone chess by letting them follow book openings at first — but
eventually they figure out new tactics on their own.

We try three variants of RL

• Baseline RL: Without the heuristic
• Workload-aware RL: With the heuristic, without the decay
• Workload-guided RL: With the heuristic gradually decaying

Results – End-to-end latency

• Servicing 2000 requests with 4
model instances (V100, Llama-
2-7b)

• Using Round Robin as
benchmark

Improvements
• Baseline RL 7.54 seconds (4.35%)
• Workload Aware RL 13.50 seconds (7.79%)
• Workload Guided RL 19.18 seconds (11.43%)

Results – Time Between Tokens (TBT)

• Calculated after first token is
generated

• Distribution plot shows lesser
variance in average TBT

TBT no longer spikes because of
incoming prompts!

Results – Waiting Time at Router and Model

Waiting Time (s)

2.05

Workload
Guided RL

Near 0 waiting
time and

preemption at
model

4.41

Workload Aware
RL

High waiting
time at router

0.59

Baseline RL
Longer queues

and preemption
at model

Results – Generalizability and Scalability

Our method is generalizable to
different hardwares, prefill

chunking and more instances!

Highlights Fixed shortcomings of SOTA.
Improved performance

from ~8% to 73% !

First of a kind
study on impact of
mixing workloads

RL based router with the aim
to minimize E2E latency. Learning

guided with workload mixing impact

Upto 11% reduction in
average E2E

latency over current
methods!

Questions?

Experimental Details – Infrastructure

• 4 model instances, each managed with vLLM (FCFS scheduler)
• Hardware: V100
• Model: Llama 2 7B
• Datasets: Books (translation), IMDb (sentiment analysis), SQuAD

(in-context QnA), Elli5 Reddit (no-context QnA), WNUT (entity
recognition)

• 2000 requests

Experimental Details – Hyperparameters

• Arrival rate: 20 requests per second
• Action interval: 0.02 seconds (minimum decode iteration time)
• Exploration factor: decays within episode from 0.99 for first 30

episodes (decay factor 0.5)

Workload Impact Estimator

Calculate impact of mixing as
linear combination of two

Latency due to prefill and
decode tokens increases

linearly

Motivation

Prefill

Where is
EuroSys’25?

Iteration 1

Decode
Iteration 2 Iteration 3 Iteration 4

In Rotterdam, Amsterdam.

Figure courtesy of “Taming Throughput-Latency Tradeoff in LLM Inference with
Sarathi-Serve” at OSDI’24

Motivation

Prefill

Where is
EuroSys’25?

Iteration 1

Decode
Iteration 2 Iteration 3 Iteration 4

In Rotterdam, Amsterdam.

Single request needs
multiple passes through the

model for completion

Input shape varies between
requests

Motivation

Prefill

Where is
EuroSys’25?

Iteration 1

Decode
Iteration 2 Iteration 3 Iteration 4

In Rotterdam, Amsterdam.

Prompt and decode phase have different characteristics

Compute intensive Memory intensive

Motivation

Prefill

Where is
EuroSys’25?

Iteration 1

Decode
Iteration 2 Iteration 3 Iteration 4

In Rotterdam, Amsterdam.

?

Output length is hard to predict. Depends on task type
and prompt source

	Slide Number 1
	LLM Serving frameworks
	What does a router need to decide?
	What are the factors that impact the E2E latency?
	Routing and Batching Algorithm Space
	Importance of routing algorithm
	What does a router need to know?
	Output length prediction
	Decode length prediction results
	What does a router need to know?
	Router design�What does a router need to decide?
	We propose lightweight Reinforcement Learning (RL)
	RL Formulation – Action Space
	RL Formulation
	RL Formulation
	Workload (heuristic)-guided RL Formulation
	Final reward formulation
	We try three variants of RL
	Results – End-to-end latency
	Results – Time Between Tokens (TBT)
	Results – Waiting Time at Router and Model
	Results – Generalizability and Scalability
	Highlights
	Questions?
	Experimental Details – Infrastructure
	Experimental Details – Hyperparameters
	Workload Impact Estimator
	Motivation
	Motivation
	Motivation
	Motivation

