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Backgrounds: GPU Memory Is No Longer Enough!
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Memory usage of LLaMA Models
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Memory required(LLaMA-3(405B):
1.9TB = 24 * 80GB (H100)
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Backgrounds: SOTA Solutions \

* Multi-GPU Parallelism
* GPU may not always be readily available
e e.g., Megatron-LM@SC’21, MegaScale@NSDI’24, HAP@EuroSys’24, etc.

» Data Offloading/Checkpointing
* Requires complex memory copy orchestration
e e.g., ZeRO-Offload@ATC’21, ZeRO-infinity@SC’21, POET@PMLR’22, etc.

* Intermediate Result Recomputation

* Introduces extra computation overhead
e e.g., Skipper@MICRO’22, Aceso@EuroSys’24, AdaPipe @ASPLOS’ 24, etc.

* Memory compression & Quantization
* Adds overhead and potential accuracy loss
e e.g., ZeroQuant(4+2)@arXiv'24 (Deepspeed), FP6-LLM@arXiv’'24 (Deepspeed), etc.
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UVM Can Be Another Solution! \

 Unified Virtual Memory
* On-demand migration

* Memory oversubscription
* Workloads” memory footprint > GPU memory capacity
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GPT-2 performance w/ and w/o UVM and memory usage across
varying batch sizes
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PyTorch Caching Allocator (PCA)

\

* Memory hierarchy:
 Allocator -> Pools -> Allocations -> Subranges (tensors)

Allocator (PCA)

Allocation 1

d Allocationn §
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Goal of This Study \

* Explore the potential of using UVM for deep learning (DL)
workloads

* Examine, for the first time, how DL frameworks’ unique
memory management (PCA) interacts with UVM

* Provide insights for efficiently adopting UVM in DL
systems
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Evaluation Platform & Targeting DL Models

Evaluation Platform

System GPU CUDA Nsight
CPU GPU System Memory Driver Toolkit Systems
Intel(R) Xeon(R) | NVIDIA A100 | . o0 | 156 GB | 5509042 | 121 2023.1.2
Gold 5320 80GB PCle mux . 7V : Vv.cbas. 1.

Evaluated DL Models

_ Batch | Memory
Model Type Layers Architecture Size Foo tprint(MB)
Convolutional
AlexNet CNN 8 Full Connected 128 5316
ResNet50 CNN 50 Residual Block 32 15952
ResNet101 CNN 101 Residual Block 32 22588
T fi
GPT-2 Transformer 12 ranstormer 8 12008
(Decoder)
BERT Transformer 12 Transformer 16 12350
(Encoder)
Whisper Transformer
(small) Transformer 12 (En/De-coder) 16 9824
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UVM Is Good for DL Workloads

Oversubscription Factors
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UVM Is Good for DL Workloads

Oversubscription Factors Oversubscription Factors
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(a) With PCA.
Performance under diverse oversubscription factors.

(b) Without PCA.

Observation 1: LLMs, such as GPT-2 and BERT, benefit more from UVM than simpler CNNs under a high
oversubscription factor, due to intensive computation overlapping with page fault handling.

Observation 2: Despite recommendations to limit the oversubscription factor to 1.25, our findings show acceptable

overhead even at higher values for DL workloads.
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Memory usage per kernel over time for various models.

The memory footprint is large, but memory usage per kernel is not that large.
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PCA Trades Pages Faults for Migrations
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Number of pages faults. Size of Migrations.

Observation 3: PCA'’s pool-based memory management effectively reduces substantial page faults. Given that the
main performance bottleneck of UVM is expensive page faults, pool-based memory management can be a solution.

Observation 4. PCA trades page fault overhead for memory migration overhead. As UVM s smart prefetching and

pre-eviction mechanisms effectively remove memory migrations from the critical path, the cumbersome page fault
overhead of UVM can be tackled by integrating the UVM with PCA.
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Takeaways \

DL workloads’ memory behaviors suit UVM, enabling large-scale
execution on limited GPU memory without needing multiple GPUs.

 UVM, once seen as inefficient for DL due to page faults, benefits
from modern techniques like PCA.

 UVM with PCA is effective, but further DL-specific, context-aware
optimizations (prefetching/pre-eviction) can enhance performance.
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Thank you!
Any questions?
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